Reg. No.								

Question Paper Code

13694

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

First Semester

Computer Science and Business Systems

20BSMA102 - DISCRETE MATHEMATICS

Regulations - 2020

	Regulations - 2020								
D	uration: 3 Hours Ma	x. Mai	rks: 1	00					
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Marks	K – Level	co					
	Answer ALL Questions								
1.	What is the negation of the statement "Sam is rich and happy"?	1	KI	COI					
	(a) Sam is poor or unhappy (b) Either Sam is poor or happy								
2	(c) Either Sam is poor or unhappy (d) Sam is not rich and happy.	1	K1	COI					
2.	$p \rightarrow q$ is logically equivalent to	_	ΚI	COI					
2	(a) $\neg p \lor \neg q$ (b) $p \lor \neg q$ (c) $\neg p \lor q$ (d) $\neg p \land q$	-	<i>K1</i>	CO2					
3.	If m pigeons are assigned to n pigeonholes, then there must be a pigeonhole containing at least	1	K1	002					
	(a) $\left[\left(\frac{m-1}{n}\right)\right] + 1$ pigeons (b) $\left[\left(\frac{m-1}{n}\right)\right] - 1$ pigeons								
	(c) $\left[\left(\frac{m+1}{n}\right)\right] + 1$ pigeons (d) $\left[\left(\frac{m-n}{n}\right)\right] + 1$ pigeons								
4.	If 9 colours are used to paint 100 houses then at least how many houses will be of the	1	K2	CO2					
⊣.	same colour								
	(a) 15 (b) 13 (c) 12 (d) 14								
5.	How many rows are there in the truth table for a function with 3 variables?	1	K2	CO3					
	(a) 4 (b) 6 (c) 8 (d) 12								
6.	The dual of $A + 0 = A$ is	1	<i>K1</i>	CO3					
	(a) $A \cdot 1 = A$ (b) $A + 1 = A$ (c) $A \cdot 0 = A$ (d) $A + 0 = 1$								
7.	A Hamiltonian path in a graph	1	K1	CO4					
	(a) Visits every edge exactly once (b) Visits every vertex exactly once								
	(c) Visits every vertex and edge exactly once (d) Must be a cycle								
8.	The number of edges in a tree with n vertices is	1	<i>K1</i>	CO4					
	(a) $n-1$ (b) n (c) $n+1$ (d) $2n$								
9.	Let $G = \{1, -1, i, -i\}$ is group under multiplication then how many elements are self-	1	KI	COS					
	invertible in G?								
1.0	(a) 1 (b) 2 (c) 3 (d) 4	1	V 1	COS					
10.	If H_1 and H_2 are subgroups of the group G, Then, which one of the following is also a	1	K1	COS					
	subgroup of G?								
	(a) $H_1 \cup H_2$ (b) $H_1 \cap H_2$ (c) $H_1 \Delta H_2$ (d) none of these								
	$PART - B (12 \times 2 = 24 Marks)$								
	Answer ALL Questions								
11.	Prove that $(p \land (p \rightarrow q)) \rightarrow q \Rightarrow T$.	2	K2	COI					
		. 2	W2	COL					
12.	Use indirect method to prove that the conclusion $(\exists x)Q(z)$ from $(\forall x)(P(x) \rightarrow Q(x))$	$)$ 2	K2	COI					
	and $(\exists y)P(y)$.								
13.	Find the dual of the statement $(p \land q) \rightarrow (p \rightarrow q)$.	2	K2	COI					
	14. Solve the recurrence relation $a_n - 2a_{n-1} = 3^n$, $a_1 = 5$.								
	15. In any group of 100 people, several will have birthdays in the same month. At least how								
13.	many must have birth days in the same month.	w 2	K2	CO2					

- 16. Prove that if n is an integer and n is odd, then n^2 is odd.
- 2 17. Prove that the zero element of a Boolean algebra is unique. K2CO3
- 2 CO318. Simplify the Boolean expression xy' + z + (x' + y)z'. K2
- 2 CO4 19. State and prove the hand shaking theorem. K2
- 20. Define a tree with an example.

then D will not enjoy himself."

- 2 K1CO4 2 *K*2 CO5 21. Prove that the identity element of a group is unique.
- 2 *K*2 CO5 22. Show that the set $\{1, 2, 3, 4\}$ is a group under multiplication modulo 5.

PART - C $(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23. Obtain the principal conjunctive normal form (PCNF) and principal disjunctive CO1 normal form (PDNF) of $(\neg p \rightarrow q) \land (q \leftrightarrow p)$.

b) Verify the validity of the following argument: "If A works hard, then B or C will enjoy themselves. If B enjoys himself, then A will not work hard. If D enjoys himself, then C will not. Therefore, if A works hard,

- 11 K3 CO2 Prove by using Mathematical induction 24. $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$
 - Solve the recurrence relation $a_{n+1} a_n = 2n + 3$, $n \ge 0$, $a_0 = 1$.
 - 11 CO3
- 25. In a Boolean algebra, prove that the following statements are equivalent. i) a + b = b ii) $a \cdot b = a$ iii) a' + b = 1 iv) $a \cdot b' = 0$.
 - Minimize the function $f(a, b, c, d) = \Sigma(1, 2, 4, 5, 6, 11, 12, 13, 14, 15)$ using Karnaugh CO3 b) map method.
- *K3* CO4 26. a) Examine whether the following pairs of graphs G_1 and G_2 given in figures are isomorphic or not.

- OR K3 CO4 Prove that the maximum number of edges in a simple disconnected group G with *n* vertices and *k* components is $\frac{(n-k)(n-k+1)}{2}$.
- CO₅ 27. Show that the intersection of any two subgroup of a group G is also a subgroup of a) G.
 - OR 11 *K3* CO5 State and prove Lagrange's theorem. b)

2

11

11

K3 CO1

CO2

K3

K2

CO2

- 28. a) (i) Prove that $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$, by mathematical induction.
 - (ii) In any Boolean algebra, Show that (a+b')(b+c')(c+a') = (a'+b)(b'+c)(c'+a).

5 K3 CO3

OR

- b) (i) A man hiked for 10 hours and covered a total distance of 45 km. It is known that he hiked 6 km in the first hour and only 3 km in the last hour. Show that he must have hiked at least 9 km within a certain period of 2 consecutive hours.
 - (ii) If $a, b \in S$, $S = \{1,2,4,8\}$ and a + b = LCM(a,b), a.b = GCD(a,b) and a' = 8/a, show that $\{S, +, ., ., ', 1, 8\}$ is not a Boolean algebra.