Question Paper Code

13706

B.E. / **B.Tech.** - **DEGREE EXAMINATIONS, APRIL** / MAY 2025

Third Semester

Civil Engineering

(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering, Electronics and Instrumentation Engineering & Instrumentation and Control Engineering)

20BSMA301 - LINEAR ALGEBRA, PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS Pagulations 2020

	Regulations - 2020			
Dυ	č	x. Mai	rks: 1	00
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$	ML.	<i>K</i> –	CO
	Answer ALL Questions	Marks		
1.	Let $S = \{(-1,0,1), (2,1,4)\}$. The value of k for which the vector $(3k + 2,3,10)$ belongs to	1	K2	COI
	the linear span of S is			
	(a) 3 (b) -2 (c) 2 (d) 8			
2.	The dimension of set of all polynomials of degree at most 10 over set of real is	1	<i>K</i> 2	COI
	(a) 10 (b) 13 (c) 12 (d) 11			
3.	Let $T: V \to W$ be a linear transformation and T is one-to-one. Then $Ker\ T$ is	1	K1	CO2
	(a) $\{0\}$ (b) $\{1\}$ (c) V (d) W			
4.	If $u = (2, 1+i, i), v = (2-i, 2, 1+2i)$, then $\langle u, v \rangle =$	1	K2	CO2
	(a) $8-5i$ (b) $8+5i$ (c) $8+3i$ (d) $8-3i$			
5.	The partial differential equation of all planes having equal intercepts on x and y axis is	1	<i>K</i> 2	CO3
	(a) $pq = z$ (b) $pqz = 1$ (c) $q = p$ (d) $p = qz$			
6.	What are the Lagrange's multipliers while solving the partial differential equation?	1	K1	CO3
	p(3z - 4y) + q(4x - 2z) = (2y - 3x)			
	(a) 2,3,4 (b) 1,1,1 (c) 3,4,2 (d) 4,2,3	_		
7.	F[af(x) + bg(x)] =	1	KI	CO4
	(a) $aF(s) + bG(s)$ (b) $bG(s) + aF(s)$ (c) $aF(s) - bG(s)$ (d) $G(s) - aF(s)$	_		
8.	The Fourier Cosine transform of $f(3x)$ is	1	K2	CO4
	(a) $\frac{1}{3}F_c\left(\frac{s}{3}\right)$ (b) $F_c\left(\frac{s}{3}\right)$ (c) $-\frac{1}{3}F_c\left(\frac{s}{3}\right)$ (d) $-F_c\left(\frac{s}{3}\right)$			
9.	Z-transform of $\left[\frac{1}{n!}\right]$ is	1	K2	COS
	(a) $e^{\frac{1}{z}}$ (b) $e^{\frac{-1}{z}}$ (c) $\frac{1}{e^z}$			
10.	į	1	K2	COS
	The Z-transform of the function $\{(-2)^k\}$ is (a) $\frac{z}{z+1}$ (b) $\frac{z}{z+k}$ (c) $\frac{z}{z+2}$ (d) $\frac{z}{z-1}$			
	$(z) z+1 \qquad (z) z+k \qquad (z) z+2 \qquad (z) z-1$			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	State the necessary and sufficient condition for a subset W to be subspace of a vector	2	K1	COI
	space V over F.			
12.	Check whether the vectors $(1,2,3)$, $(2,3,1)$ in $R^3(R)$ are linearly independent or not.	2	<i>K</i> 2	COI
	Define vector space.	2	K1	COI
	Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(1,0,3) = (1,1)$ and	2	K2	CO2
	T(-2,0,-6)=(2,1)? Justify.			
1.5	•	2	<i>K1</i>	CO2
	State Dimension theorem. Find the norm of $(2, 4, 0)$ in $\mathbb{R}^3(\mathbb{R})$ with the standard inner product	2	K1 K2	CO2
	Find the norm of $(3,-4,0)$ in $\mathbb{R}^3(\mathbb{R})$ with the standard inner product.	2	K2	CO3
	Find the complete integral of $\sqrt{p} + \sqrt{q} = 1$.			
18.	Solve $(D + D' - 1)(D - 2D' + 3)z = 0$.	2	K2	CO3

2 K1CO4 19. Define Fourier Transform pair. 20. State and prove change of scale property on Fourier transforms. CO4 2 CO5 21. Find $Z[na^n]$. K1 CO5 22. State convolution theorem on Z-transform. $PART - C (6 \times 11 = 66 Marks)$ Answer ALL Questions Show that $F^n = \{(a_1, a_2, ..., a_n) : a_i \in F\}$ is a vector space over F with respect to K3 CO1 23. addition and scalar multiplication defined component wise. b) Check whether $2x^3 - 2x^2 + 12x - 6$ is a linear combination of 11 *K3* CO1 $x^3 - 2x^2 - 5x - 3$ and $3x^3 - 5x^2 - 4x - 9$. K3 CO2 24. Find an orthonormal basis of the inner product space $R^3(R)$ with standard inner product, given the basis $B = \{(1,1,0), (1,-1,1), (-1,1,2)\}$ using Gram-Schmidt orthogonalization process. OR Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by T(x,y) = (x + 3y, 0.2x - 4y). Compute the matrix K3 CO2 of the transformation with respect to the standard basis of R^2 and R^3 . Find N(T)and R(T). Solve the following equation $(D^2 + 2DD' + D'^2)z = e^{x-y} + xy$. 11 K3 CO3 25. a) OR Solve the equation x(y-z)p + y(z-x)q = z(x-y). 11 CO3 b) Find the Fourier transform of f(x) given by $f(x) = \begin{cases} a^2 - x^2; & |x| < a \\ 0; & |x| > a > 0 \end{cases}$ Hence prove that $\int_0^\infty \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}$. 11 26. K3 CO4 Apply Fourier transform to find the value of $\int_0^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)}$. K3 CO4 Apply convolution theorem to find inverse Z-transform of $\frac{8z^2}{(2z-1)(4z-1)}$. 11 CO5 27. Solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ given that $u_0 = 0$, $u_1 = 1$ using the Z transform. 11 CO5 6 28. a) (i) Find the basis for the subspace K3 CO1 $W_2 = \{(a_1, a_2, a_3, a_4, a_5) \in F^5 / a_2 = a_3 = a_4 \text{ and } a_1 + a_5 = 0\} \text{ of } F \text{ and hence}$ find dimension of W_2 . K3 CO2 (ii) Let V = P(R), the vector space of polynomials over R with inner product defined by $\langle f, g \rangle = \int_{0}^{1} f(t) g(t) dt$, where f(t) = t + 2, $g(t) = t^{2} - 2t - 3$. Find ||f|| and ||g||. b) (i) Determine if the set $\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$ is linearly CO1 dependent or linearly independent in $R^3(R)$. (ii) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(x, y, z) = (2x - y, 3z). Verify whether T is linear K3 CO2

or not. Also find N(T).