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PART - A (MCQ) (10 x 1 = 10 Marks)
Answer ALL Questions
Let S = {(—1,0,1).(2,1,4)}. The value of k for which the vector (3k + 2,3,10) belongs to
the linear span of S is

(@3 (b) -2 (c)2 (d) 8
The dimension of set of all polynomials of degree at most 10 over set of real is
(a) 10 (b) 13 (c) 12 (d) 11
Let T:V — W be a linear transformation and T is one-to-one. Then Ker T is
(a) {0} (b) {1} @V (d) w
fu=@Q, 1+1i i),v=02—1i, 2, 1+ 2i),then(u,v) =
(a) 8 —5i (b) 8 + 5i (c) 8+ 3i (d) 8 —3i
The partial differential equation of all planes having equal intercepts on x and y axis is
(@ pq=z (b)pgz =1 ©qg=p (d)p=qz

What are the Lagrange’s multipliers while solving the partial differential equation?
p(3z —4y) + q(4x — 2z) = (2y — 3x)
(@234 (b)111 (c)3,4,2 (d)4,2,3
Flaf(x) + bg(x)] =
(@ aF(s)+bG(s) (b)bG(s)+ aF(s) (c)aF(s) —bG(s) (d)G(s) —aF(s)
The Fourier Cosine transform of f(3x) is

@ 3% () OFEG) ©-3EE) @©-E(F)
Z-transform of [ﬂ is

@) e (b) > © % (@)=
The Z-transform of the function {(—2)*} is

(a) = (b) = (©) = (d) =

PART - B (12 x 2 = 24 Marks)
Answer ALL Questions

State the necessary and sufficient condition for a subset W to be subspace of a vector
space V over F.
Check whether the vectors (1,2,3),(2,3,1) in R3(R) are linearly independent or not.
Define vector space.
Is there a linear transformation T :R®—R?*such that T(1,0,3)=(11) and
T(-2,0,—6)=(2,1) ? Justify.
State Dimension theorem.
Find the norm of (3,-4,0) in R*(R) with the standard inner product.
Find the complete integral of \/p + ,/q =L1.
Solve (D+D —1)(D—2D +3)z = 0.

Remember; K2 — Understand; K3 — Apply; K4 — Analyze; K5 — Evaluate; K6 — Create
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K1 — Remember; K2 — Understand; K3 — Apply; K4 — Analyze; K5 — Evaluate; K6 — Create

Define Fourier Transform pair.

State and prove change of scale property on Fourier transforms.

Find Z[na™].

State convolution theorem on Z-transform.

b)

b)

a) (i)

(ii)

b) (i)
(i)

PART - C (6 x 11 = 66 Marks)
Answer ALL Questions
Show that F" ={(ay,a,, ...,a,):a; € F} is a vector space over F with respect to
addition and scalar multiplication defined component wise.
OR
Check whether 2x3 — 2x2 + 12x — 6 is a linear combination of
x3 — 2x? — 5x — 3and 3x3 — 5x% — 4x — 9.

Find an orthonormal basis of the inner product space R*(R) with standard inner
product, given the basis B={(1,1,0),(1,-11),(-112)} using Gram-Schmidt

orthogonalization process.

and R(T).

Solve the following equation (D? + 2DD' 4+ D?)z = e*™ + xy.
OR
Solve the equation x(y — 2)p + y(z — x)q = z(x — y).

Find the Fourier transform of f(x) given by

a? —x% |x| <a

f(x)={

Apply convolution theorem to find inverse Z-transform of

OR
Solve u,, ., + 4u, 41 + 3u,, = 3" given that uy = 0,u; = 1 using the Z transform.

Find the basis for the subspace

W, = {(ay,a,,as,a4,0as) € F>/a, = a; = a4 anda, + as = 0}of F and hence

find dimension of W,.

Let V = P(R), the vector space of polynomials over R with inner product defined

1

by (f,g)=_[f(t)g(t)dt,where f(t)=t+2, g(t)=t> —2t—3.

0
Find ||f]land |g]|-

or not. Also find N(T).

0; |x|>a>0.

OR
Let T:R? - R3 be defined by T(x,y) = (x + 3y, 0,2x — 4y). Compute the matrix
of the transformation with respect to the standard basis of R?and R3. Find N(T)

Hence prove that [

OR

Apply Fourier transform to find the value of fooo el

OR
Determine if the set {x3 + 2x2, —x? + 3x + 1,x3 — x? + 2x — 1} is linearly
dependent or linearly independent in R3(R).
Let T: R — R%be defined by T(x,y,z) = (2x —y, 3z). Verify whether T is linear

2

o SINX —X COSX d

(2z-1)(4z-1)’
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