Reg. No.																	
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13709

B.E. / B.Tech./ M.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

Computer Science and Engineering

(Common to Information Technology and M.Tech. - Computer Science and Engineering)

20BSMA304 - STATISTICS AND LINEAR ALGEBRA

Regulations - 2020

(Use of Statistics tables is permitted)

Du	ration: 3 Hours	Max. Mai	rks: 1	00				
	Marks	<i>K</i> –	co					
	Answer ALL Questions							
1.	Which is not a measure of central tendency?	1	K1	CO1				
	(a) Mean (b) Median (c) Mode (d) Range							
2.	Normal distribution is symmetric about?	1	KI	CO1				
	(a) Mean (b) Standard deviation (c) Variance (d) Covariance							
3.	The choice of one-tailed test and two-tailed test depends upon:	1	K1	CO2				
	(a) Null hypothesis (b) Alternative hypothesis							
	(c) Composite hypotheses (d) None of these							
4.	Student's t-test is applicable only when:	1	K1	CO2				
	(a) $n \le 30$ (b) $n > 30$ (c) $n \ne 30$ (d) None of these							
5.	Consider the following two subsets of vector space	1	<i>K</i> 2	CO3				
	$S_1 = \{(x_1, x_2), x_1 + x_2 > 0\}$ and $S_2 = \{(x_1, x_2), x_1^2 + x_2^2 \le 1\}$, then							
	(a) S_1 be a subspace of $V_2(R)$ but not S_2 (b) S_2 be a subspace of $V_2(R)$ but not S_1							
	(c) Both are be a subspace of $V_2(R)$ (d) Neither S_2 nor S_1 is a subspace of $V_2(R)$							
6.	If $S = \{v_1 , v_2 , \ldots , vn \}$ is a set of vectors in a finite dimensional vector space V , then	S 1	<i>K</i> 2	CO3				
	is called a basis for V if:							
	(a) S spans V (b) S is linearly independent (c) either (a) or (b) (d) both (a) and (b)							
7.	Let $T: R5 \rightarrow R3$ be the linear transformation defined by	1	K1	CO4				
	$T(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_2, x_2 + x_3 + x_4, x_4 + x_5)$. Find the nullity of the standard							
	matrix for T.							
	(a) 5 (b) 3 (c) 2 (d) 1							
8.	A matrix that is both symmetric and upper triangular must be a	1	K2	CO4				
	(a) diagonal matrix (b) non-diagonal but symmetric							
	(c) both (a) and (b) (d) none of the above	_		~~-				
9.	If the inner product between the vectors vanishes then what will be the angle between	1	<i>K</i> 2	CO5				
	them?							
	(a) 45 (b) 90 (c) 90 (d) 0	_		~~-				
10.	The Gram-Schmidt process orthogonalizes vectors by subtracting	1	<i>K</i> 2	CO5				
	(a) taking square roots (b) projections (c) the y-components (d) the x-component	ts						
	DADE D (12 2 2434 1)							
	$PART - B (12 \times 2 = 24 Marks)$							
11	Answer ALL Questions	2	<i>K1</i>	CO1				
	What is the kurtosis of Normal distribution?							
12.	If X is a normal random variable with mean 3 and variance 9, find the probability that X	X is 2	<i>K</i> 2	CO1				
	between 2 and 5.	-	***	<i>ac.</i>				
13.	What is the angle between the regression lines?	2	K1	CO1				
14.	What are Type1 and Type 2 errors?	2	<i>K1</i>	CO2				

15.	What	are the assumptions on which small sample test(students t-test) is based?	2	<i>K1</i>	CO2			
16.	What are the applications of chi-square test?							
17.	. Define vector space.							
18.	3. Is $\{(1,4,-6), (1,5,8), (2,1,1), (0,1,0)\}$ is a linearly independent subset of \mathbb{R}^3 ?							
19.	9. Find the matrix [T] whose linear operator $isT(x, y) = (5x + y, 3x - 2y)$							
20.	Write	the conditions for a matrix A to be diagonalizable.	2	<i>K</i> 2	CO4			
21.	In C ($[0,1]$), let $f(t) = t$, $g(t) = e^t$, then evaluate $< f$, $g >$.	2	<i>K</i> 2	CO5			
22.	State Triangle inequality in inner product space.							
		PART - C (6 × 11 = 66 Marks) Answer ALL Questions						
23.	a) (i)	For a distribution Karl Pearson's coefficient of skewness is 0.64, standard deviation	6	<i>K3</i>	CO1			
	 is 13 and mean is 59.2 Find mode and median. (ii) A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days on which (i) some demand is refused (ii) neither car is used. 							
		OR						
	b)	Obtain the correlation coefficient for the following.	11	<i>K3</i>	CO1			
		X 22 26 29 30 31 31 34 35						
		Y 20 20 21 29 27 24 27 31						
24.	a) (i)	In a random sample of 400 persons from a large population 120 are females. Can be it said that males and females are in the ratio 5:3 in population. Use 10% level of significance.	6	К3	CO2			
	(ii)	A sample of 26 bulbs gives a mean life of 990 hours with a SD of 20 hours. The manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not up to the standard?	5	K3	CO2			
	1.	OR	11	V2	CO2			
	b)	The theory predicts that the proportion of beans in the whole group A,B,C,D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the 4 groups were 882,313,287,118. Does the experimental result support the theory?	11	K3	CO2			
25.	a)	Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in R$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ and $(a_1, a_2) = (ca_1, ca_2)$. Is V a vector space over R with these operations? Justify your answer.	11	К3	CO3			
	b)	OR Determine the following set is a linearly independent (or) linearly dependent $\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}inP_3(R)$.	11	<i>K3</i>	CO3			
26.	a)	Let $T: R^3 \to R^3$ be a linear transformation defined by $(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$. Evaluate a basis and dimension of null space N(T) and range space R(T) and range space R(T). Also verify dimension theorem.	11	К3	CO4			
	b)	OR	11	К3	CO4			
	0)	Check whether $A = \begin{pmatrix} 2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3 \end{pmatrix}$ is diagonalizable or not using modal matrix.	-					

27. a) Let \mathbb{R}^3 have the Euclidean inner product. Use the Gram –Schmidt process to $U_1 = 0.05$ transform the basis (u_1, u_2, u_3) into an orthonormal basis, where $u_1 = (1, 1, 1), u_2 = (0, 1, 1)$ and $u_3 = (0, 0, 1)$.

OR

- b) Let V be the vector space of polynomial with inner product given by $\langle x, y \rangle = \int f(t)g(t)dt$. Let f(t) = t + 2 and $g(t) = t^2 2t 3$, find (i) $\langle f, g \rangle$ (ii) ||f|| (iii) ||g||.
- 28. a) (i) Let V and W be the vector spaces and $T: V \to W$ be linear. Then prove that N(T) 6 K3 CO4 and R(T) are subspaces of V and W respectively.
 - (ii) State and prove Cauchy-Schwarz inequality in an inner product space.

 5 K3 CO5

OR

- b) (i) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $(a_1, a_2) = (a_1 + a_2, 0, 2a_1 a_2)$. Find the basis for N(T) ⁶ K3 CO4 and compute N(T).
 - (ii) Let $T: P_2(R) \to P_3(R)$ be defined by $T(f(x)) = 2f'(x) + 3 \int_0^x f(t) dt$.

 Determine whether T is one-one or not.