			_			_		
Reg. No.								

13578

Question Paper Code

13578

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth Semester

Civil Engineering

(Common to Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Mechanical and Automation Engineering & Mechanical Engineering)

20BSMA403 - STATISTICS AND NUMERICAL METHODS

Regulations - 2020

(Use of statistical table is permitted)

		(Us	e of sta	tistical table is	permitted)			
Du	ration: 3 Hours				M	ax. Ma	rks: 1	00
		PART	- A (M	$\mathbf{CQ})\ (10 \times 1 = 1)$	10 Marks)	Marks	<i>K</i> –	CO
			Answe	er ALL Questio	ns	Murks		
1.	The value at which the	he Null Hypoth	esis get	s rejected is cal	led as?	1	K1	CO1
	(a) Significant Value	e		(b) Rejection '	Value			
	(c) Acceptance Valu			(d) Critical Va				
2.	What is the degree of	f freedom (df) i	n a t-tes	st for two indep	endent means?	1	K1	CO1
	(a) df= $n_1 + n_2 - 2$			(b) df= $n_1 + n_2$	=			
	(c) df= $n_1 - n_2 - 1$	-		(d) df = n_1 –	$n_2 + 1$			
3.	ANOVA stands for	_				1	KI	CO2
	(a) Assessment for N	•		•				
	(c) Analysis of Varia		0	(d) Analysis o		7	1/1	G02
4.	In a Latin Square De	_				1	K1	CO2
_	- · · ·	· · ·		-	(d) Usually equal	1	V1	CO3
5.	The Condition for co	onvergence of the	ne Newi	ton Raphson me	ethod is $A = A \cdot $	1	ΚI	COS
	(a) $ f(x)f^{''}(x) > $ (c) $ f(x)f^{'}(x) > $	$\int_{0}^{\infty} (x) ^{2}$		(b) $ f(x)f'(x) $	$ x \leq f'(x) ^2$			
-	(c) $ f(x)f(x) > f(x) $	$f(x) ^{-}$	г1 э	(a) $ f(x)f(x) $	$ x > f(x) ^2$	1	K2	CO3
6.	For the matrix, $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$	$\begin{bmatrix} -3 \\ -1 \end{bmatrix}$, let $x_0 =$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ the	value of x_1 is		1	K2	003
	- <i>J</i> ı	r / 1	-T-	101	r101			
	(a) $\begin{bmatrix} -4 \\ -4 \end{bmatrix}$	(b) $\begin{bmatrix} 4 \\ 10 \end{bmatrix}$	(c)	10	$(d)\begin{bmatrix}10\\10\end{bmatrix}$			
-	- 1-	-10-		4 -	1103	7	V1	CO1
7.	The error of trapezoi					1	K1	CO4
	(a) h^3	(b) h^2	(c) h^5	_	(d) h^6			
8.	What is the value of	'h' for the integ	gral \int_1^2	$\int_{1}^{2} f(x) dx dy t$	aking 4 sub intervals	1	K2	CO4
0	(a) 0.3	(b) \mathcal{L}	(c) 0.2	$a^{2}u$	(d) 0.20	1	K2	CO5
9.	(a) 0.5 Classify the following	g equation $\frac{\partial}{\partial x^2}$	$+2\frac{\partial}{\partial x\partial y}$	$\frac{\partial}{\partial y} + \frac{\partial}{\partial y^2} = 0$		1	112	cos
	(a) Parabolic	(b) Elliptic	(c) Hy	perbolic	(d) Laplace			
10.	The value of k in the	e one-dimensio	nal hea	t equation u_{xx}	$t = 32u_t$ by taking $h = 0.25$ for	or ¹	K2	CO5
	t > 0, 0 < x < 1 is		•					
	(a) 0	(b) 1	(c) 0.2	5	(d) 0.5			
	(a) 0	` '	` '	$2 \times 2 = 24 \text{ Mar}$				
				$L \times Z = 24$ Man	is)			
11	Define Null Hypothe			-		2	K1	CO1
12.	State the applications		-	Poulous.		2	K1	CO1
	Define Type-I and T					2	K1	CO1
	Write the basic assur	• I	vsis of v	ariance.		2	K1	CO2
		1	,	-				

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

15.	Write any two differences between CRD and RBD.	2	<i>K1</i>	CO2
16.	Why a 2 x 2 Latin square is not possible? Explain.	2	K2	CO2
17.	Using Gauss elimination method solve $x + y = 2$, $2x + 3y = 5$.	2	K2	CO3
18.	Solve the linear system $x - 4y = -2$, $3x + y = 7$ by Gauss-Jordon method.	2	<i>K</i> 2	CO3
19.	Find the divided difference of $f(x) = x^3 + x + 2$ arguments 1, 3, 6, 11.	2	<i>K</i> 2	CO4
20.	State Newton's forward formula for interpolation.	2	<i>K1</i>	CO4
21.	Given $y' = x + y$, $y(0) = 1$. Find $y(0.1)$ by Euler's method.	2	<i>K</i> 2	CO5
22.	Write down the standard five - point formula to solve Laplace's equation $u_{xx} + u_{yy} = 0$.	2	<i>K1</i>	CO5

PART - $C(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23. a) Two independent samples of sizes 9 and 7 from a normal population had the 11 K3 CO1 following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

Do the estimates of the population variance differ significantly at 5% level?

OR

b) In an investigation into the health and nutrition of two groups of children of 11 K3 CO1 different social status, the following results are got.

Health's	Social Status				
Status	Poor	Rich			
Below	130	20			
Normal:	102	108			
Above	24	96			

Discuss the relation between the Health and their social status.

24. a) An experiment was designed to study the performance of 4 different detergents for leaning fuel injectors. The following "cleanliness" readings were obtained with specially designed equipment for 12 tanks of gas distributed over 3 different models of engines:

5			
	Engine 1	Engine 2	Engine 3
Detergent A	45	43	51
Detergent B	47	46	52
Detergent C	48	50	55
Detergent D	42	37	49

Perform the ANOVA and test at 1% level of significance, whether there are differences in the detergents or in the engines.

OR

b) A variable trial was conducted on wheat with 4 varieties in a Latin Square Design. The plan of the experiment and the plot yield are given below. Analyse data and interpret the result.

C25	B23	A20	D20
A19	D19	C21	B18
B19	A14	D17	C20
D17	C20	B21	A15

25. a) Solve the system of equations by Gauss-Seidel method 27x + 6y - z = 85, x + y + 54z = 110, 6x + 15y + 2z = 72.

1 K3 CO3

K3 CO2

K3 CO2

OR

b)	Determine the numerically largest Eigen value ar	ally largest Eigen value and the corresponding Eigen vector						CO3
		/25	1	2 \	1			
	of the following matrix, using the power method	1	3	0				
		\	Λ	1/				

26. a) The following data are taken from the steam table:

Temp. °C	140	150	160	170	180
Pressure kgf/cm^2	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature $t = 142^{\circ}$ and $t = 175^{\circ}$.

OR

- b) Evaluate $\int_{0}^{1} \int_{1}^{2} \frac{2xy}{(1+x^{2})(1+y^{2})} dx \, dy$, by Trapezoidal rule with h = k = 0.25.
- 27. a) Apply Runge-Kutta method to find approximate value of y for x=0.1,0.2, if $\frac{dy}{dx} = x + y^2$ given that y =1 when x=0.

OR

- b) Solve the equation Using Crank-Nicholson method, solve $u_{xx}=16u_t$, 0 < x < 1, t > 0, u(x, 0) = 0, u(0, t) = 0, u(1, t) = 100t. Compute u(x, t) for one step with h = 1/4.
- - ii) Apply modified Euler's method to find y(0.2) and y(0.4) given $y'=x^2+y^2$, 5 K3 CO5 y(0)=1 by taking h=0.2

b) i) By using Newton's divided difference formula find f(8), given

	х	4	5	7	10	11	13
Ī	f(x)	48	100	294	900	1210	2028

OR

ii) Solve y' = x + y, y(0) = 1 by Taylor's series method. Find the values of y at x = 0.1 and x = 0.2

K3 CO4

K3 CO4

CO4