Question Paper Code

13729

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

First Semester

Computer Science and Engineering

(Common to All Branches)

20BSPH101 – ENGINEERING PHYSICS

Regulations - 2020

	ϵ			
D	uration: 3 Hours M	ax. Ma	arks:	100
	Manka	<i>K</i> –	CO	
	Answer ALL Questions	Marks		
1	1	1	<i>K1</i>	CO1
	(a) Primitive unit cell (b) Secondary unit cell			
	(c) Layered unit cell (d) Derived unit cell			
2		1	K1	CO1
_	48% (b) 38% (c) 32% (d) 30%	7	77.1	G02
3		1	<i>K1</i>	CO2
	(a) Highly coherent electrons (b) Highly coherent photons			
1	(c) Highly coherent phonons (d) None of them	1	K1	CO2
4		1	K1	CO2
	(a) Optical pumping (b) Direct conversion (c) Inelastic atom-atom collision (d) Chemical reaction			
5		. 1	<i>K1</i>	CO3
J	external forces is within a certain limit. What is that limit?	, –		
	(a) Plastic limit (b) Elastic limit			
	(c) Deformation limit (d) None of the mentioned			
6		1	<i>K1</i>	CO3
	(a) compressive force/area (b) tensile force/area			
	(c) pressure/area (d) tangential force/area			
7		1	K1	CO4
	(a) Graded index fibre (b) Multi mode step-index fibre			
	(c) Single step-index fibre (d) Glass fibre			
8	1	1	<i>K1</i>	CO4
	(a) Polarisation (b) Diffraction (c) Refraction (d) Total internal reflection			
9		1	<i>K1</i>	CO5
(a) Dual nature (b) Wave nature (c) Particle nature (d) Photon nature				006
1(O. Which of the following refers to the term C.O.P. of refrigeration?	1	K1	CO6
	(a) Cooling for Performance (b) Coefficient of Performance			
	(c) Capacity of Performance (d) Co-efficient of Plant			
	DADE D (12 2 24 M 1			
	PART - B $(12 \times 2 = 24 \text{ Marks})$ Answer ALL Questions			
11	. Name the seven crystal systems.	2	<i>K1</i>	CO1
12	2. Calculate the interplanar spacing for the (101) plane in a simple cubic lattice whose	2	<i>K</i> 2	CO1
1 ^	lattice constant is 4.2 Å.	2	K1	CO2
	3. What is population inversion?			
14	J J	2	K2	CO2
15	5. State Hooke's law.	2	<i>K1</i>	CO3
16	5. Why girders are given I-shaped?	2	K2	CO3
K	l – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		137	729
	1			

17	White	the advantages of fibre entire communication even radio vyeve communication	2	<i>K</i> 2	CO4
	Write the advantages of fibre optic communication over radio wave communication.				CO4
	What is meant by attenuation?				CO5
		are matter waves?	2	K1 K1	CO5
		the physical significance of the wave function.			
21.		ich process the heat transfer can take place without the medium? Justify your	2	K2	CO6
22.	Give	the principle of solar water heaters.	2	K1	CO6
		PART - C $(6 \times 11 = 66 \text{ Marks})$			
23.	a)	Answer ALL Questions Describe the FCC structure and derive the number of atoms, coordination number, atomic radius and packing factor.	11	K2	CO1
		OR			
	b)	Calculate the Atomic Packing Factor (APF) for BCC and HCP structures.	11	K2	CO1
24.	a)	spontaneous and stimulated emissions.	11	K2	CO2
		OR			
	b)	Outline the principle, construction and working of a CO ₂ laser.	11	K2	CO2
25.	a)	Derive an expression for the elevation at the center of a beam which is loaded at both ends.	11	K2	CO3
		OR			
	b)	Derive an expression for the depression produced at the end of a cantilever beam.	11	K2	СОЗ
26.	a)	Describe the classification of optical fibres based on refractive index profile and propagation mode.	11	K2	CO4
		OR			
	b)	Deduce an expression for the numerical aperture and acceptance angle of fiber in terms of the refractive index of the core and cladding.	11	K2	CO4
27.	a)	Derive an expression for the wavelength of scattered photon in Compton effect. OR	11	K2	CO5
	b)	Obtain Schrodinger's time-dependent and independent wave equations.	11	K2	CO5
28.	a)	Derive the expression for effective heat flow through compound media in series and parallel.	11	K2	CO6
		OR			
	b)	Discuss the method to determine the thermal conductivity of a good conductor using Forbe's method.	11	K2	CO6