Reg. No.								

Question Paper Code 13730

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

First Semester

Computer Science and Business Systems 20BSPH102 - FUNDAMENTALS OF PHYSICS

Regulations - 2020

Dι	ration: 3 Hours	Max. Mar	rks: 1	00
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Marks	<i>K</i> –	co
	Answer ALL Questions			
1.	Which of the following does not show any interference pattern?		K1	CO1
•	(a) Soap bubble (b) Excessively thin film (c) A thick film (d) Wedge Shaped fi		1/1	001
2.	Which of the following is a uniaxial crystal?	1	K1	CO1
2	(a) Borax (b) Mica (c) Quartz (d) Selenite	1	V1	CO2
3.	Coordination number in simple cubic crystal structure is	1	ΚI	CO2
4	(a) 2 (b) 4 (c) 6 (d) 8	1	K1	CO2
4.	Number lattice points in primitive cell is (a) one (b) two (c) three (d) four	1	IX I	CO2
5.	In case of a forced vibration, the resonance wave becomes very sharp when the	1	K1	CO3
٥.	(a) applied periodic force is small (b) quality factor is small	-		000
	(c) damping force is small (d) restoring force is small			
6.	Electromagnetic waves are considered to be in nature.	1	K1	CO3
٠.	(a) transverse (b) longitudinal (c) mechanical (d) Neither longitudinal nor transverse	rse		
7.	The velocity of electromagnetic wave in vacuum is	1	K1	CO4
	(a) $C = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$ (b) $C = \frac{2}{\sqrt{\varepsilon_0 \mu_0}}$ (c) $C = \frac{3}{\sqrt{\varepsilon_0 \mu_0}}$ (d) $C = \frac{\sqrt{\varepsilon_0 \mu_0}}{3}$			
8.	The equation $\nabla \times E = -\frac{\partial B}{\partial t}$ is the differential form of	1	<i>K1</i>	CO4
	(a) Ampere's circuital law (b) Faraday's law (c) Gauss's law (d) Coulomb's law			
9.	The maximum energy level upto which the electrons can be filled at 0 K is	1	<i>K1</i>	CO5
· ·	(a) Femi level (b) Fermi energy (c) Fermi velocity (d) Fermion			
10.	LASER is	1	<i>K1</i>	CO6
	(a) Light amplification by spontaneous emission of radiation			
	(b) Light amplitude sequential emission of radiation			
	(c) Light amplitude by stimulated emission of radiation			
	(d) Light amplification by stimulated emission of radiation.			
	$PART - B (12 \times 2 = 24 Marks)$			
11	Answer ALL Questions	2	νn	COL
	Compare interference and diffraction.	2	K2	CO1
	Define the term Bandwidth.	2	K2 K1	CO2
	What are Miller indices?	2	K1 K1	CO2
	What are Bravais lattices?	2	K2	CO3
	Explain why damping devices are often used on machinery.	2	K2 K1	CO3
16.	Give reason for the energy dissipation in case of damped harmonic oscillator.	2	K2	CO4
17.	Explain the thermodynamic process.	2	K2	CO4
	Define the efficiency of a heat engine. State de-Broglie hypothesis.	2	K2	CO5
	What are matter waves?	2	K1	CO5
	Write down any two differences between step index and graded index fiber.	2	K1	CO6
	Write the condition for laser action.	2	K1	CO6
44.	The the condition for faser action.			
			10-	

$PART - C (6 \times 11 = 66 Marks)$

Answer ALL Questions

		This wei The Questions			
23.	a)	Explain the theory of plane transmission grating and derive equation of maxima and minima.	11	K2	CO1
		OR			
	b)	Derive the mathematical expression for Brewster angle and list out any three applications of Brewster's law.	11	K2	CO1
24.	a)	Prove that the atomic packing factor of HCP is 0.74.	11	K2	CO2
		OR			
	b)	Obtain the atomic packing factors for SC and BCC lattices.	11	K2	CO2
25.	a)	Describe the differential equation of a damped harmonic oscillator.	11	<i>K</i> 2	CO3
23.	u)	OR			
				770	G03
	b)	With neat sketch derive the expression for time period of oscillation and frequency of a spring -mass system suspended vertically.	11	K2	CO3
26.	a)	Obtain the Maxwell's equations in vacuum and non-conducting medium.	11	K2	CO4
		OR			
	b)	Explain the concept of entropy and derive the expression for entropy.	11	<i>K</i> 2	CO4
25			11	W2	CO5
27.	a)	Derive an expression for Planck's law of radiation.	11	<i>K</i> 2	CO5
		OR			
	b)	Obtain the eigen values and eigen functions for an electron enclosed in a one-dimensional potential box.	11	K2	CO5
28.	a)	Describe the construction and working of a CO ₂ laser with a neat sketch.	11	<i>K</i> 2	CO6
		OR			
	b)	Discuss briefly about the fiber optic displacement sensor and pressure sensor.	11	<i>K</i> 2	CO6
	0)	Discuss offerty about the fiber optic displacement sensor and pressure sensor.			