Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13696

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Electronics and Communication Engineering

(Common to Electrical and Electronics and Engineering & Computer and Communication Engineering)

20BSPH201 – PHYSICS OF ELECTRONIC DEVICES

Regulations - 2020

	Regulations - 2020			
Du	ration: 3 Hours	Max. M	Iarks	: 100
	Marks	<i>K</i> –	co	
	Answer ALL Questions			
1.	The constant in Wiedemann–Franz law is called as:	1	<i>K1</i>	CO1
	(a) Avogadro constant (b) Planck constant			
	(c) Lorenz number (d) Boltzmann number		***	G01
2.	For free electrons in a three-dimensional metal, the density of states is proportional to (a) E^0 (constant) (b) $E^{1/2}$ (c) E (d) $E^{3/2}$	1	K2	CO1
3.	Which of the following dopants is usually used to construct an n-type extrinsic semiconductor?	c 1	K1	CO2
	(a) Boron (b) Phosphorus (c) Gallium (d) Indium			
4.	The physical process that is accountable for the coherent light emission in a laser diode?	1	<i>K1</i>	CO2
	(a) Spontaneous emission (b) Thermal radiation			
	(c) Stimulated emission (d) Impact ionization			
5.	The temperature above which ferromagnetic materials lose their magnetism is named:	1	<i>K</i> 2	CO3
	(a) Curie temperature (b) Critical temperature			
_	(c) Boiling point (d) Magnetic saturation temperature	1	W2	CO2
6.	Clausius-Mossotti equation is valid for:	1	<i>K</i> 2	CO3
	(a) Highly conducting materials (b) Dense ionic solids only			
7	(c) Homogeneous, isotropic, non-polar materials (d) Anisotropic magnetic materials	1	K1	CO4
7.	The relationship among emitter, base, and collector currents is:	1	ΚI	CO4
8.	$I_B = I_C - I_B$ (b) $I_C = I_E - I_B$ (c) $I_C = I_E - I_B$ (d) $I_E = I_B + I_C$ The Hybrid- π model is predominantly used for:	1	K1	CO4
	(a) Small-signal analysis of BJTs (b) Large signal analysis of MOSFETs			
	(c) DC bias analysis of FETs (d) Power amplifier design			
9.	Compared to a JFET, a MOSFET has:	1	K2	CO5
	(a) Lower input impedance (b) Higher power dissipation			
	(c) Higher input impedance (d) Higher noise figure			
10.	A Light Emitting Diode (LED) emits light when:	1	K1	CO6
	(a) Reverse biased (b) Forward biased			
	(c) No voltage is applied (d) AC is applied			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	Define Fermi energy level. Give its significance.	2	<i>K1</i>	CO1
12.	State Electron effective mass.	2	<i>K1</i>	CO1
13.	Give two examples of an intrinsic semiconductor.	2	Kl	CO2
14.	Draw the V-I characteristics of a PN junction diode in both forward and reverse bias.	2	K2	CO2
	Distinguish between Zener and avalanche breakdown.	2	K2	CO2
16.		2	K2	CO3
	-			

17.	Define saturation magnetization.					
18.	List the different types of polarization in dielectric materials.					
19.	Sketch the symbol of NPN and PNP transistor.					
20.). Mention the application where a multi-emitter transistor is normally used.					
21.	1. Define the threshold voltage of a MOSFET.					
22.	How does a CCD convert light into electronic signals?					
		$PART - C (6 \times 11 = 66 Marks)$				
23.	۵)	Answer ALL Questions Obtain an expression for thermal conductivity in metals using alassical theory.	11	K2	CO1	
23.	a)	Obtain an expression for thermal conductivity in metals using classical theory.		112	001	
	1 \	OR	11	W)	COL	
	b)	Derive the expression for the effective mass of an electron in a solid and explain its significance.	11	K2	CO1	
24.	a)	Deliberate the process of doping and how it alters the carrier concentration in semiconductors.	11	К3	CO2	
		OR				
	b)	Explain the working of a Zener diode and its characteristic breakdown behavior.	11	К3	CO2	
25.	a)	Describe domain theory in ferromagnetic materials.	11	K2	СОЗ	
		OR				
	b)	Explain the dielectric loss and derive an expression for it.	11	K2	CO3	
26.	a)	Explain the construction and working of a NPN transistor in CB configurations and discuss the input and output characteristics. OR	11	К3	CO4	
	b)	Clarify how the Hybrid- π model simplifies the analysis of BJTs for amplifier design.	11	К3	CO4	
27.	a)	Elucidate the construction, working, and characteristics of D-MOSFET with a neat sketch.	11	K2	CO5	
		OR				
	b)	Illuminate the construction and working of a solar cell. Mention its merit and demerit.	11	K2	CO5	
28.	a)	Explain with a neat sketch the construction, working and characteristics of N-channel JFET.	11	K2	CO6	
		OR				
	b)	Explain the construction, working operation and characteristics of UJT with a neat sketch.	11	K2	CO6	