Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13697

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Mechanical Engineering

(Common to Mechanical and Automation Engineering)

20BSPH202 - PHYSICS OF MATERIALS

Regulations - 2020

Du	ration: 3 Hours Ma	ax. Mar	ks: 1	00			
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Marks	<i>K</i> –	co			
	Answer ALL Questions	WIUIKS	Level	CO			
1.	The elements present in the system are called	1	K1	CO1			
2	(a) components (b) system (c) variables (d) temperature	J					
2.	In system, the two components are completely soluble in both liquid and soli states	u 1	K1	CO1			
	(a) eutectic (b) peritectic (c) isomorphous (d) eutectoid	1	11.1	001			
3.	The steels which contain are called eutectoid steels	1	V I	CO2			
	(a) 0.8% C (b) less than 0.8% C (c) more than 0.8% C (d) zero		K1	CO2			
4.	The number of atoms crossing unit area of cross section per second is proportional to the		***	G 0.2			
	(a) temperature gradient (b) concentration gradient (c) temperature (d) pressure	1	KI	CO2			
5.	The purpose of tensile test is to determine	J					
	(a) strength (b) ductility (c) toughness (d) all of these	1	K1	CO3			
6.	A fracture which takes place by the rapid propagation of crack is known as	1	K1	CO3			
7	(a) ductile (b) creep (c) brittle (d) fatigue	-		000			
7.	materials show the spontaneous magnetization. (a) Diamagnetic (b) Ferromagnetic (c) Paramagnetic (d) Superconducting	1	K1	CO4			
8.	The value of 1 Bohr magneton is						
0.	(a) $9.24 \times 10^{-27} \text{ Am}^2$ (b) $9.27 \times 10^{-27} \text{ Am}^2$	1	K1	CO4			
	(c) $9.27 \times 10^{-24} \text{ Am}^2$ (d) $9.24 \times 10^{-24} \text{ Am}^2$						
9.	Superconductors exhibit perfect	1	K1	CO5			
10.	(a) paramagnetism (b) diamagnetism (c) ferromagnetism (d) ferrimagnetism is the principle used to prepare metallic glasses.						
10.	(a) Annealing (b) Quenching (c) Slow cooling (d) Slow heating	o l	<i>K1</i>	CO6			
	(a) ramouning (b) Quonoming (c) sion cooming (c) sion noming	>					
	$PART - B (12 \times 2 = 24 Marks)$						
	Answer ALL Questions						
	What is substitutional solid solution?	2	<i>K1</i>	CO1			
	Define Hume – Rothery's rule.	2	<i>K1</i>	CO1			
13.	Summarize the purposes of adding other elements to plain carbon steel.	2	<i>K</i> 2	CO2			
14.	State Fick's second law of diffusion.	2	K1	CO2			
15.	List out the differences between slip and twinning.	2	<i>K</i> 2	CO3			
16.	2	<i>K1</i>	CO3				
17.	17. Explain why ferrites are used as transformer core.						
18.	Discuss retentivity and coercivity in hysteresis curve.	2	K2	CO4			
19.	What is meant glass transition temperature?	2	K1	CO5			
20.	What are ceramic materials?	2	K1	CO5			
K1 -	- Remember: K2 – Understand: K3 – Apply: K4 – Analyze: K5 – Evaluate: K6 – Create		136	197			

21.	Menti	on some applications of fibre reinforced plastics.	2	K1	CO6
22.	List out the applications of engineering ceramics.				
		PART - C $(6 \times 11 = 66 \text{ Marks})$			
23.	a) (i)	Answer ALL Questions Discuss briefly about Tie-line and lever rule.	6	<i>K</i> 2	CO1
		Explain peritectic phase diagram with one example.	5	<i>K</i> 2	CO1
	\ /	OR			
	b)	What is eutectic phase diagram? Explain with example different phases formed with composition and temperature.	11	K2	COI
24.	a)	Describe the iron-carbon phase diagram and explain different phases formed with respect to change in composition and temperature. OR	11	K2	CO2
	b)	Explain TTT diagram for steel.	11	K2	CO2
	0)	Explain 111 diagram for seed.	11	K2	CO2
25.	a)	What do you mean by creep? Explain different stages of creep using creep curves.	11	<i>K</i> 2	CO3
		OR			
	b)	Describe how hardness of a material is determined using Brinell hardness test. Give its advantages and limitations.	11	K2	CO3
26.	a)	Explain how magnetic materials classified are based on their magnetic moments. And also compare their properties.	11	K2	CO4
		OR			
	b)	Explain the structure and properties of ferrites.	11	K2	CO4
27.	a)	Describe the preparation and properties of metallic glasses.	11	K2	CO5
		OR			
	b)	Discuss in detail the various types of dielectric breakdown.	11	K2	CO5
28.	a)	Describe any two characteristics of shape memory alloys and its applications.	11	K2	CO6
	• •	OR			
	b)	Elaborate any one of the preparation method of nanomaterials and list out of its applications.	11	K2	CO6