Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13700

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20BSPH206 - PHYSICS FOR INSTRUMENTATION ENGINEERING

Regulations - 2020

Du	Max. Marks: 100					
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$		<i>K</i> –	<i>a</i> 0		
	Answer ALL Questions	Marks	Level	co		
1.	According to classical free electron theory, the resistance of a metal increases with	1	K1	CO1		
	(a) increasing temperature (b) decreasing temperature					
	(c) increasing electron concentration (d) decreasing electron concentration		***	G0.1		
2.	The concept of effective mass is mostly useful in describing	1	KI	CO1		
	(a) the speed of the electron in free space					
	(b) the behaviour of electrons in an external electric field					
	(c) the spin of electrons(d) the charge of electrons					
3.	In semiconductors, what is responsible for their conduction?	1	K1	CO2		
٥.	(a) Electrons (b) Holes (c) Both electrons and holes (d) Neither electrons nor holes	3				
4.	In an intrinsic semiconductor, the number of free electrons is equal to the number of	1	<i>K1</i>	CO2		
	(a) dopants (b) ions (c) holes (d) protons					
5.	Which of the following materials is a high temperature superconductor?	1	<i>K1</i>	CO3		
	(a) mercury (b) lead (c) ytrrium barium copper oxide (d) aluminium					
6.	At what temperature does the Meissner effect typically occur in a material?	1	<i>K1</i>	CO3		
	(a) below curie point (b) below critical temperature					
7	(c) at the melting point (d) below room temperature	1	V I	CO1		
7.	In the ferromagnetic materials, the magnetic domains are (a) Rendemly oriented (b) cliented with the applied magnetic field	1	K1	CO4		
	(a) Randomly oriented (b) aligned with the applied magnetic field (c) completely aligned with one another (d) not present					
8.	Ferrites are a class of materials that are primarily composed of	1	<i>K1</i>	CO4		
0.	(a) iron and oxygen (b) iron and chromium					
	(c) iron and aluminium (d) iron and manganese					
9.	Which of the following is an example for polar dielectric material?	1	<i>K1</i>	CO5		
	(a) Nitrogen (b) Water (c) Glass (d) Teflon					
10.	Which of the following is a type of liquid crystal phase?	1	<i>K1</i>	CO6		
	(a) smectic (b) crystalline (c) gas (d) plasmonic					
	$PART - B (12 \times 2 = 24 Marks)$					
	Answer ALL Questions					
11.	What is Lorentz number?	2	<i>K1</i>	CO1		
12.	12. What is meant by effective mass of an electron?					
13.	2	<i>K</i> 2	CO2			
14.	2	K1	CO2			
15.	2	K1	CO3			
16.	2	<i>K1</i>	CO3			
17.	State the electron spin alignment in dia, para and ferromagnetic materials.	2	K1	CO4		
K1 -		13700				

18.	List s	ome properties of soft magnetic materials.	2	<i>K1</i>	CO4
19.	9. Define polarization.				CO5
20.	20. What is electric susceptibility?				CO5
21.	21. What are the types of liquid crystals?				CO6
22.	Defin	e metallic glasses.	2	<i>K1</i>	CO6
		$PART - C (6 \times 11 = 66 Marks)$			
22	`	Answer ALL Questions	11	K2	CO1
23.	a)	What are the postulates of classical free electron theory? Based on that, derive the expression for electrical conductivity of a conducting material. OR	11	K2	COI
	b)	Obtain an expression for density of states in metal.	11	K2	CO1
	U)	Obtain an expression for density of states in metal.			
24.	a)	Derive an expression for density of electrons in conduction band for an intrinsic Semiconductor.	11	K2	CO2
		OR			
	b)		11	K2	CO2
	,	semiconductor.			
25.	a)	Draw and explain about the high temperature superconductors.	11	<i>K</i> 2	CO3
		OR			
	b)	Summarize the differences between Type-I and Type-II superconductors.	11	<i>K</i> 2	CO3
26.	a)	Explain about the hysteresis of a ferromagnetic material based on domain theory.	11	<i>K</i> 2	CO4
		OR	7.7	1/2	CO.1
	b)	Describe the structure and properties of ferrites.	11	K2	CO4
27	,		11	W)	CO5
27.	a)	Derive an expression for electronic polarization of a dielectric material.	11	KΖ	CO5
	1.	OR	11	νn	CO5
	b)	Explain briefly about the elementary ideas about piezoelectric and ferroelectric materials.	11	K2	COS
		materials.			
28.	a)	Explain the preparation and applications of metallic glasses.	11	K2	CO6
	,	OR			
	b)	Describe carbon nanotubes with types of structures, properties and applications.	11	K2	CO6