13561

Question Paper Code 13561

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth Semester

Computer Science and Business Systems 20CBPC403 - OPERATING SYSTEMS

Regulations - 2020

D	uration: 3 Hours Ma	ıx. Mar	ks: 1	00
$PART - A (MCQ) (10 \times 1 = 10 Marks)$			<i>K</i> –	
	Answer ALL Questions	Marks	Level	co
1.	Select a system call for creating a new process.	1	<i>K1</i>	CO1
	(a) getpid() (b) fork() (c) newprocess() (d) create()			
2.	Exception handling interrupt will occur when an	1	<i>K1</i>	CO1
	(a) instruction executes divide by 1 (b) instruction executes divide by 0			
	(c) instruction executes a system call (d) all of the above.			
3.	The interval from the time of submission of a process to the time of completion is termed	1	<i>K1</i>	CO2
	as			
	(a) waiting time (b) turnaround time (c) response time (d) throughput	_		
4.	Which system call can be used by a parent process to determine the termination of child	1	K1	CO2
	process?			
_	(a) wait() (b) exit() (c) fork() (d) get()	7	1/1	002
5.	What is the primary purpose of a precedence graph?	1	<i>K1</i>	CO3
	(a) To manage deadlocks in processes (b) To represent process dependencies			
	(c) To synchronize critical sections (d) To implement message passing	1	K1	CO3
6.	In the Producer-Consumer problem, what does the producer do?	1	ΚI	003
	(a) Wait for space in the buffer (b) Consume items from the buffer (c) Produces items and place there in the buffer (d) Check for deadle also			
7.	(c) Produce items and place them in the buffer (d) Check for deadlocks In contiguous memory allocation	1	<i>K1</i>	CO4
/.	(a) Processes are assigned to memory in continuous blocks	-	111	001
	(b) Memory is allocated in non-continuous sections			
	(c) Virtual memory is used for execution			
	(d) Pages are stored in different locations			
8.	Fixed partitioning leads to	1	<i>K1</i>	CO4
	(a) Internal fragmentation (b) External fragmentation			
	(c) Both internal and external fragmentation (d) No fragmentation			
9.	A directory structure is used to	1	<i>K1</i>	CO5
	(a) Organize files in a hierarchical or linear format			
	(b) Store files in registers			
	(c) Delete files permanently from memory			
	(d) Convert logical addresses to physical addresses	_		~~=
10.	The First-Come, First-Served (FCFS) disk scheduling algorithm	1	KI	CO5
	(a) Services requests in the order they arrive (b) Always gives the shortest seek time			
	(c) Works in a circular order (d) Moves the disk arm to the nearest reques	t		
	$PART - B (12 \times 2 = 24 Marks)$			
Answer ALL Questions				
11.	State the Operating System Services.	2	<i>K1</i>	CO1
	List down the five major categories of system calls.	2	K1	CO1
	·	2	K1	CO1
13.	What is meant by the bootstrap program?	2	MΙ	COI

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

14.	Compare and contrast scheduler and dispatcher.	2	<i>K</i> 2	CO2		
15.	What is PCB? Specify the information maintained in it.	2	K1	CO2		
16.	. What is convoy effect?			CO2		
17.	What are the necessary conditions for deadlock to occur?	2	<i>K1</i>	CO3		
18.	State the three states of the philosophers in dining philosopher problem.	2	K1	CO3		
19.	Illustrate the use of Compaction.	2	<i>K</i> 2	CO4		
20.	Define Belady's anomaly.	2	K2	CO4		
21.	Classify the operations that can be performed on a Directory.	2	<i>K1</i>	CO5		
22.	Compare and contrast various disk scheduling algorithms.	2	K2	CO5		
$PART - C (6 \times 11 = 66 Marks)$						

Answer ALL Questions

23. a) Explain in detail about various generations of operating systems and any UNIX 11 K2 CO1 operating system commands.

OR

- b) (i) Explain the different operating system structures with a neat diagram.
- 6 K2 CO1

K2 CO1

- (ii) Write a C program to create one parent process and child process and print process id using necessary system calls.
- 24. a) Solve the problem given below using FCFS, SJF CPU Scheduling algorithm and explain the scheduling criteria.

Process Name	Burst Time (Secs)
P1	24
P2	3
P3	5
P4	6

OR

b) The following processes are being scheduled using a preemptive, priority-based, 11 K3 CO2 round-robin scheduling algorithm.

Process	Priority	Burst Time	Arrival Time
P1	8	15	0
P2	3	20	0
P3	4	20	20
P4	4	20	25
P5	5	5	45
P6	5	15	55

Each process is assigned a numerical priority, with a higher number indicating a higher relative priority. The scheduler will execute the highest priority process. For processes with the same priority, a round-robin scheduler will be used with a time quantum of 10 units. If a process is preempted by a higher-priority process, the preempted process is placed at the end of the queue.

- (a) Show the scheduling order of the processes using a Gantt chart.
- (b) What is the turnaround time for each process?
- (c) What is the waiting time for each process?
- 25. a) Demonstrate a Producer Consumer problem in real life and provide a solution using 11 K2 CO3 semaphore.

OR

	b)	Explain the dining philosopher's critical section problem solution using monitor and write the algorithm using test and set instruction that satisfy all the critical section requirements.	11	K2	CO.
26.	a)	Explain the following memory allocation techniques with an example. (i) First fit (ii) Best fit (iii) Worst fit	11	K2	CO-
		OR			
	b)	Summarize the total number of page faults using the following page replacement algorithm for the given string. (i) LRU (ii) FIFO String: 70345102034501 Page frame size: 4	11	K2	CO
27.	a)	Explain different Disk scheduling algorithms SCAN, CSCAN, CLOOK.	11	K2	CO.
		OR			
	b)	Summarize briefly about file attributes, operations, types and structure.	11	K2	CO.
28.	a) (i)	Explain how paging supports virtual memory. With a neat diagram explain how logical address is translated into physical address.	6	K2	CO-
	(ii)	Explain the following with appropriate diagrams: (a) Two level directory structure. (b) Acyclic-graph directory structure	5	K2	CO.
		OR			
	b) (i)	Compare and contrast internal fragmentation and external fragmentation in memory management and state the solution for the above problem.	6	K2	CO
	(ii)	Explain any two disk space allocation methods.	5	<i>K</i> 2	CO