Reg. No.								

Question Paper Code

13467

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth Semester

Civil Engineering

20CEPC401 - APPLIED HYDRAULIC ENGINEERING

Regulations - 2020

Dι	uration: 3 Hours M	ax. Mar	ks: 10	00		
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$ Answer ALL Questions	Marks	Level	co		
1.	The flow characteristics of a channel does not change with time at any point. What type of flow is it?	1	K I	CO1		
	(a) Steady flow (b) Uniform flow (c) Laminar flow (d) Turbulent flow	_	K1	COI		
2.	Which geometric parameter determines the efficiency of the channel? (a) Hydraulic depth (b) Hydraulic radius (c) Section factor (d) Normal depth	th 1	<i>K1</i>	CO1		
3.	For a rectangular channel, the best hydraulic section occurs when:					
	(a) Depth is equal to twice the width(b) Width is equal to twice the depth(c) The hydraulic radius is minimized(d) Wetted perimeter is minimized	1	<i>K1</i>	CO2		
4.	The point of minimum specific energy for a given discharge in an open channel flow					
	corresponds to which flow condition?	1	<i>K1</i>	CO2		
	(a) Subcritical flow (b) Supercritical flow (c) Critical flow (d) Rapidly varied flow	,				
5.	What does "gradually varied flow" mean in open channel hydraulics?					
	(a) Flow where the depth changes abruptly along the channel.					
	(b) Flow where the depth changes slowly along the length of the channel.	1	K1	CO3		
	(c) Flow with constant velocity throughout the channel length.					
	(d) Flow that is uniform across any cross-section.	1				
6.	What type of water surface profile is formed when the flow is subcritical and the channel and its least than the partial class?		V1	CO2		
	slope is less than the critical slope? (a) M1 profile (b) S1 profile (c) C1 profile (d) H1 profile	1	K1	CO3		
7.	(a) M1 profile (b) S1 profile (c) C1 profile (d) H1 profile What is the purpose of energy dissipation in open channels through hydraulic jumps?					
7.	(a) To reduce sediment transport downstream (b) To prevent channel erosion	1	K1	CO4		
	(c) To minimize turbulence upstream (d) To increase downstream flow velocit		IX I	004		
8.	Analysis of a surge in open channel is done by using	y				
0.	(a) Continuity Equation (b) Energy Equation	1	K1	CO4		
	(c) Momentum Equation (d) None of the above					
9.		77.1	G05			
	Which place in hydraulic turbine is most susceptible for cavitation (a) Inlet of draft rube (b) Blade inlet (c) Guide blade (d) Draft tube exit	1	<i>K1</i>	CO5		
10.	The process of filling the liquid into the suction pipe and the pump casing up to the lev	el				
	of the delivery valve is called	1	<i>K1</i>	CO6		
	(a) Filling (b) Pumping (c) Priming (d) Leveling					
	$PART - B (12 \times 2 = 24 Marks)$					
11	Answer ALL Questions	2	77.1	G01		
	Describe the Open channel flow.	2	K1	CO1		
12.	· · · · · · · · · · · · · · · · · · ·	2 2	K1 K1	CO1 CO2		
13.	13. What is meant the most economical section of a channel?14. Explain the terms in brief: Specific Energy and Critical depth.					
	2 2	K2 K2	CO2			
	Explain the term of GVF. List the classification of flow profile.	2	K2 K1	CO3		
	Illustrate about rapidly varied flow with example.	2	K2	CO4		
	Define Surges with examples.	2		CO4		
		2	134			
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create						

19.	9. Differentiate between an impulse turbine and a reaction turbine.				CO5
	O. What you meant by specific speed of turbine?			<i>K1</i>	CO5
	. Define NPSH and its application.				CO6
22.	Describe the negative slip.				CO6
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions			
23.	a)	Explain the types and properties of open channel flow. OR	11	K2	CO1
	b)	Derive a relation for Chezy's equation for a Uniform flow.	11	K2	CO1
24.	a)	Derive the expressions for most economical trapezoidal channel. (i) Half of top width = Length of one of the sloping sides and (ii) Hydraulic mean depth = ½ depth of flow. OR	11	K2	CO2
	b)	A 3m wide rectangular channel conveys 12m³ of water at a depth of 2m. Determine (a) Specific energy of flowing fluid. (b) Critical depth, critical velocity and the minimum specific energy. (c) Froude number and state whether the flow is sub-critical or supercritical.	11	К3	CO2
25.	a)	Derive the dynamic equation for the Gradually Varied Flow and state clearly the assumptions in analysis of GVF.	11	К3	CO3
	b)	OR Determine the length of the backwater curve in a rectangular channel width of 4m depth of water at upstream side 2m and downstream side 3m discharge of channel is $15 \text{ m}^3/\text{s}$. Take $i_b = 1/2000 \& i_e = 0.000031$.	11	К3	CO3
26.	a)	The depth of flow of water at a certain section of rectangular channel 5m wide is 0.6m. The discharge through a channel is $15~\text{m}^3$ /s. if hydraulic jump take place on the downstream side. Find the depth of flow after jump, height of the hydraulic jump and loss of energy per kg of water.	11	К3	CO4
	L)	OR	11	K2	CO4
	b)	Discuss the types of hydraulic jump with a suitable sketch and mention their applications.	11	KZ	004
27.	a)	Explain the classification of turbines with its merits and demerits. OR	11	K2	CO5
	b)	Compute the diameter of Pelton turbine and jet which develops 3000 Kw under a head of 300 m having an overall efficiency of 83%, speed ratio = 0.46, coefficient of velocity (Cv) = 0.98, and specific speed (N) = 16.5	11	<i>K</i> 3	CO5
28.	a)	What is a reciprocating pump? Describe the principle and working of a reciprocating pump with a neat sketch.	11	K2	CO6
	b)	OR A centrifugal pump having outer diameter equal to two times the inner diameter	11	К3	C06
	U)	and running at 1000 r.p.m. works against a total head of 40 m. The velocity of low through the impeller is constant and equal to 2.5 m/s. The vane is set back at an angle of 400 at outlet. If the outer diameter of the impeller is 500 mm and width at outlet is 50 mm. Determine: (i) Vane angle at inlet and (ii) Work done by impeller on water per second.		110	200