Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13449

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Sixth Semester

Computer Science and Engineering

(Common to Electronics and Communication Engineering)

20CSOE903 - DATA STRUCTURES AND ALGORITHMS

Regulations - 2020

D	ouration: 3 Hours	Лах. М	I arks	: 100
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$			
	Answer ALL Questions	Marks	Level	CO
1.	Which of the following functions has the fastest growth rate as n increases??	1	<i>K1</i>	CO1
	(a) $O(1)$ (b) $O(\log n)$ (c) $O(n)$ (d) $O(n^2)$			
2.	What is the time complexity of Binary Search in the worst-case scenario?	1	K1	CO1
	(a) $O(n)$ (b) $O(\log n)$ (c) $O(n \log n)$ (d) $O(1)$		77.1	G02
3.	If an algorithm has time complexity $O(n^2)$, what will happen to the execution time if the	e 1	KI	CO2
	input size doubles? (a) It will double (b) It will become four times			
	(a) It will double (b) It will become four times (c) It will stay the same (d) It will become half			
4.	Which type of queue allows elements to be added based on their importance rather than	1 1	K1	CO2
	order of arrival?			
	(a) Simple Queue (b) Circular Queue (c) Priority Queue (d) Dequeue			
5.	In a singly linked list, what does the last node's next pointer point to?	1	K1	CO3
	(a) The head node (b) Itself (c) NULL (d) Random node			
6.	In a doubly linked list, each node contains	1	KI	CO3
	(a) Only data (b) Data and one pointer (c) Data and two pointers (d) Data and three pointers			
7	(c) Data and two pointers (d) Data and three pointers How many nodes are there in a full binary tree of height h?	1	K1	CO4
/.	(a) 2^h (b) $2^h - 1$ (c) $2^h - 1$ (d) h	-		
8.	What is the main purpose of a threaded binary tree?	1	K1	CO4
	(a) To balance the tree			
	(b) To reduce memory usage			
	(c) To make inorder traversal faster without using stack or recursion			
0	(d) To allow duplicate values	7	1/1	G05
9.	In a B-Tree of order m, what is the maximum number of children a node can have?	1	K1	CO5
10	(a) m (b) m-1 (c) m+1 (d) m/2 Which of the following sorting algorithms is the best choice when the input is almost	et 1	<i>K1</i>	CO6
10.	sorted?	••		
	(a) Selection Sort (b) Bubble Sort (c) Insertion Sort (d) Quick Sort			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	Define Big-O notation with an example.	2	K2	CO1
12.	Write any two differences between Linear Search and Binary Search.	2	K2	CO1
13.	Define postfix expression. Give an example.	2	K2	CO2
14.	Define Queue.	2	K2	CO2
15.	What are the steps to traverse a singly linked list?	2	K2	CO3
16.	List two advantages of doubly linked list over singly linked list.	2	K2	CO3
17.	Define the terms "height of a tree" and "leaf node" with an example.	2	K2	CO4

18.	Give	the difference between binary tree and binary search tree.	2	K2	CO4					
19.	19. List the operations that can be performed on a binary tree.									
20.	20. Define a B-Tree.									
21.	21. Mention the important properties of a good sorting algorithm.									
22.	22. Define the terms degree of a vertex and path in a graph.									
		PART - C (6 × 11 = 66 Marks) Answer ALL Questions								
23.	a)	Explain different types of Data Structure operations with suitable examples.	11	<i>K</i> 2	CO1					
		OR								
	b)	Describe the working of binary search algorithm with a suitable example.	11	<i>K</i> 2	CO1					
24.	a)	Write the algorithm to convert an infix expression to a postfix expression. Explain with a detailed step-by-step example.	11	K2	CO2					
	OR									
	b)	Explain the algorithm for inserting and deleting elements in a priority queue implemented using an array.	11	K2	CO2					
25.	a)	Explain the algorithm to insert a node at the beginning, at the end, and at a specific position in a singly linked list.	11	K2	CO3					
		OR								
	b)	Describe the algorithm to insert and delete nodes in a circular linked list with examples.	11	K2	CO3					
26	2)	Explain all the approximant that can be manformed an a DCT with assumption	11	<i>K3</i>	CO4					
26.	a)	Explain all the operations that can be performed on a BST with examples. OR	11	KS	004					
	b)	Construct an AVL tree by inserting the following elements in sequence: 50, 30, 70,	11	К3	CO4					
	U)	20, 40, 60, 80, 10, 25, and 35. Show the tree after each insertion.	11	No.	001					
27.	a)	Explain the insertion and deletion operations in a B-tree with suitable examples.	11	К3	CO5					
27.	u)	OR								
	b)	Construct a B+ tree of order 4 by inserting the following keys sequentially: 5, 15, 25, 35, 45, 55, 65, 75, 85, and 95. Show the B+ tree after each insertion.	11	К3	CO5					
28.	a)	List the different types of hashing techniques? Explain them in detail with an example.	11	K2	CO6					
OR										
	b)	Explain DFS and BFS with examples and analyze their time complexities.	11	K2	CO6					