Question Paper Code 13590

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Sixth Semester

Computer Science and Engineering

(Common to Computer Science and Engineering (IoT), Computer and Communication Engineering, Electronics and Communication Engineering, Information Technology & M.Tech. - Computer Science and Engineering (5 Years Integrated))

20CSPC601 - ARTIFICIAL INTELLIGENCE

Regulations - 2020

Regulations - 2020			
Duration: 3 Hours	Max. Ma	arks:	100
$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Manka	<i>K</i> –	CO
Answer ALL Questions	Marks	Level	CO
1. Which of the following is a characteristic of an intelligent agent?	1	K1	CO1
(a) Perception and action (b) Only perception (c) Only action (d) None of the ab			
2. Which of the following is NOT a typical intelligent agent?	1	KI	CO1
(a) Chatbot (b) Self-driving car (c) Thermostat (d) Calculator	search <i>l</i>	K1	CO2
3. You are tasked with developing a system to schedule tasks in an office. Which	searcn ¹	K1	CO2
method would you choose to prioritize the most urgent tasks? (a) A* search with a heuristic based on deadline (b) Depth-first search			
(c) Randomized search (d) Hill climbing based on task du	ration		
4. Which search strategy is optimal for finding the shortest path in an unweighted grap		K1	CO2
(a) A* search (b) Depth-first search (c) Breadth-first search (d) Greedy			
5. Which algorithm is commonly used in AI for making optimal decisions in two-		<i>K1</i>	CO3
games?			
(a) Hill climbing (b) Depth-first search (c) Minimax algorithm (d) A* search			
6. What kind of node is added to the game tree in stochastic games?	1	K1	CO3
(a) Utility node (b) Leaf node (c) Chance node (d) Search node	1	νı	CO4
7. Mental events and mental objects are useful in:	1	K1	CO4
(a) Prolog debugging(b) Representing an agent's beliefs and intentions			
(c) Programming GUIs			
(d) Looping over facts			
8. Resolution in logic is mainly used for:	1	<i>K1</i>	CO4
(a) Variable declaration (b) Function calls			
(c) Proving theorems by contradiction (d) Type checking			
9. In state-space search, what are the nodes typically represented as?	1	<i>K1</i>	CO5
(a) Operators (b) States (c) Goals (d) Heuristics	_		a o c
10. Which of the following is a type of language model?	1	KI	CO6
(a) CNN (b) SVM (c) N-gram model (d) SQL			
$PART - B (12 \times 2 = 24 Marks)$			
Answer ALL Questions			
11. List any two types of intelligent agents.	2	<i>K1</i>	CO1
12. Compare and contrast between reflex agents and model-based agents.	2	<i>K</i> 2	CO1
13. Give any two examples of uninformed search algorithms.	2	K1	CO2
14. Outline any two optimization problems that use local search.	2	<i>K</i> 2	CO2
15. Define utility function in game playing.	2		CO3
10. Zeime dunty function in game playing.			
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		<i>13</i> .	590

		erentiate between deterministic and stochastic games.	2	K2	CO3
17.	Stat	e any two features of Prolog programming language.	2	<i>K1</i>	CO4
18.	Iden	tify one advantage of using resolution in logical inference.	2	<i>K</i> 2	CO4
19.	Defi	ine relevance information in the context of learning.	2	Kl	CO5
20.	Iden	tify the use of Planning Graphs.	2	K2	CO5
21.	List	the main components of a chatbot.	2	<i>K1</i>	CO6
22.	Elab	porate the concept of semantic interpretation in NLP.	2	K2	CO6
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions			
23.	a)	Compare the types of environment types in Artificial Intelligence with suitable examples.	11	K2	CO1
		OR			
	b)	Explain the types of agents in artificial intelligence with suitable diagrams for each agent.	11	K2	CO1
24.	a)	Explain the map coloring problem as a Constraint Satisfaction Problem (CSP).	11	K2	CO2
		OR			
	b)	Explain in detail about Hill Climbing Search.	11	K2	CO2
25.	(م		11	K2	CO3
23.	a)	Describe how alpha-beta pruning enhances the efficiency of the min max algorithm. OR			
	b)	Explain in detail about min-max algorithm with an example.	11	K2	CO3
26.	a)	Consider the following statements:	11	К3	CO4
		All humans are mortal. Socrates is a human.			
		Therefore, Socrates is mortal.			
		Illustrate the above statements using First Order Predicate (FOPL).			
		Show the predicates, quantifiers, variables, and logical connectives used in your formulation.			
		OR			
	b)	Demonstrate the syntax and semantics of FOPL, including constants, variables, predicates, functions, and quantifiers.	11	<i>K3</i>	CO4
27.	a)	Explain in detail about the Planning State Space Search.	11	K2	CO5
	1 \	OR	11	νn	CO5
	b)	Outline Knowledge in Learning with example.	11	K2	CO5
28.	a)	Illustrate the language models commonly used in Natural language processing. OR	11	К3	CO6
	b)	Show simple chatbot creation with an example code.	11	К3	CO6
		-			