Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13420

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Seventh Semester

Computer Science and Engineering 20CSPC702 - MACHINE LEARNING TECHNIQUES

Regulations - 2020

Du	ration: 3 Hours Ma	ax. Mar	ks: 1	00		
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Manka	<i>K</i> –	CO		
	Answer ALL Questions	Marks	Level	CO		
1.	Which of the following is NOT a common evaluation metric for classification problems?	1	K1	CO1		
	(a) Precision (b) Recall (c) Mean Squared Error (MSE) (d) F1 Score					
2.	What is concept learning in machine learning?	1	K1	CO1		
	(a) The process of categorizing objects based on their features					
	(b) The process of inferring a Boolean-valued function from training examples					
	(c) The process of clustering similar data points together					
	(d) The process of dimensionality reduction	_				
3.	Which of the following is a key component of a perceptron?	1	K1	CO2		
	(a) Decision boundary (b) Hidden layers (c) Centroids (d) Activation function	_				
4.	What is the purpose of the learning rate in the back propagation algorithm?	1	K1	CO2		
	(a) To control the step size of the weight updates					
	(b) To determine the number of layers in the network					
	(c) To set the initial values of the weights					
_	(d) To decide the number of epochs for training	7	1/1	G02		
5.	Why is Bayes' Theorem used for in machine learning?	1	K1	CO3		
	(a) To perform linear regression					
	(b) To update the probability of a hypothesis based on new evidence					
	(c) To calculate the distance between data points					
6	(d) To cluster similar data points In the context of linear regression, what does the term "residuel" refer to?	1	K1	CO3		
6.	In the context of linear regression, what does the term "residual" refer to? (a) The predicted value	1	11.1	005		
	(b) The difference between the observed and predicted values					
	(c) The slope of the regression line					
	(d) The intercept of the regression line					
7.	What is a common technique to determine the optimal value of k in KNN?	1	K1	CO4		
,.	(a) Cross-validation (b) Grid Search (c) Random Search (d) All of the above					
8.	In Locally Weighted Regression, what is the role of the query point?	1	K1	CO4		
	(a) It is the point for which the local regression model is being fitted					
	(b) It is used to determine the overall model parameters					
	(c) It is used to select the training examples for the model					
	(d) It determines the global structure of the regression model					
9.	First-order rules in rule-based learning refer to,	1	K1	CO5		
	(a) Rules involving only single variables (b) Rules involving relations between objects					
	(c) Rules with fixed outcomes (d) Rules that maximize accuracy					
10.		1	K1	CO6		
	(a) First-Order Concept Language (b) Formal Object Concept Learning					
	(c) First-Order Control Learning (d) Framework for Objective Concept Learning					

PART - B $(12 \times 2 = 24 \text{ Marks})$

Answer ALL Questions

		Answer ALL Questions	2	<i>K1</i>	CO1				
11.	. What is the importance of Machine Learning?								
12.	Show how version spaces are used in concept learning.								
13.	How information gain is calculated in decision tree algorithms?								
14.	How does a decision tree algorithm handles missing data?								
15.	. What is role of back propagation algorithm in neural networks?				CO3				
16.	. What is the vanishing gradient problem in multilayer networks?				CO3				
17.	State	about the Gibbs Algorithm.	2	<i>K1</i>	CO4				
18.	Find t	he formula of basic probability.	2	K1	CO4				
19.	19. Identify how approximating a discrete-valued function is done using k-nearest neighbor algorithm.				CO5				
20.	20. What is meant by a "rule" in rule-based learning?				CO5				
	1. How is first-order rules are represented in machine learning?				CO6				
	2. Find the role of an agent in a reinforcement learning scenario.								
PART - C $(6 \times 11 = 66 \text{ Marks})$									
23.	a)	Answer ALL Questions Explain the Perspectives and issues of Machine learning in detail.	11	<i>K</i> 2	CO1				
	,	OR							
	b)	Demonstrate the functions of FIND-S Algorithm with a suitable example.	11	K2	CO1				
24.	a)	Explain decision tree learning with an emphasis on how the algorithm constructs the tree based on training data.	11	K2	CO2				
		OR							
	b)	Illustrate the ID3 Algorithm and infer the values from it.	11	K2	CO2				
25.	a)	Summarize the derivation of the Back propagation algorithm and Gradient Descent algorithm.	11	K2	CO3				
		OR							
	b)	Outline the common operators for Genetic algorithms and the various crossovers with diagrams.	11	K2	CO3				
26.	a)	Apply the EM algorithm and examine the details of probability learning. OR	11	К3	CO4				
	b)	Does the patient have cancer, or does he not? A patient takes a lab test and the	11	<i>K3</i>	CO4				
	- /	result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, 0.008 of the entire population have this cancer.							
27.	a)	Explain the k-nearest learning algorithm with an example. OR	11	K2	CO5				
	b)		11	K2	CO5				
	- /	system.							
28.	a)	Discuss the practical applications of reinforcement learning in real-world scenarios, providing specific examples. OR	11	K2	CO6				
	b)	Explain the Q-learning algorithm step by step, including its update mechanism and application.	11	K2	CO6				