Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13505

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Sixth Semester

Electronics and Communication Engineering 20ECEL609 - MACHINE LEARNING TECNIQUES

Regulations - 2020

Dur	ation: 3 Hours	Max. M	arks:	100
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$		<i>K</i> –	
	Answer ALL Questions	Marks	Level	co
1.	Machine learning is an application of	1	<i>K1</i>	CO1
	(a) Block chain (b) Artificial Intelligence			
	(c) Security (d) Block chain and Artificial Intelligence			
2.	Identify the type of learning in which labeled training data is used.	1	K2	CO1
	(a) Semi Unsupervised Learning (b) Supervised Learning			
	(c) Unsupervised Learning (d) Reinforcement Learning			
3.	is a disadvantage of decision trees.	1	<i>K1</i>	CO2
	(a) It is robust to outliers (b) It prone to be over fit			
	(c) It is Comparable (d) Neither robust nor over fit			
4.	In the Candidate Elimination algorithm, which type of example is used to refine the	1	<i>K1</i>	CO2
	Specific hypothesis, S?			
	(a) Positive examples (b) Negative examples (c) Mixed examples (d) Neutral examples			
5.	Which of the following best describes a perceptron?	1	<i>K1</i>	CO3
	(a) A single layer feed-forward neural network with pre-processing			
	(b) A neural network that contains feedback			
	(c) A double layer auto-associative neural network			
	(d) An auto-associative neural network			
6.	Genetic algorithms are	1	K1	CO3
	(a) A Class of algorithms that build solution and selecting best in a population	of		
	candidate solutions			
	(b) Methods based on theory of natural selection			
	(c) Methods of genetically modifying (d) A heuristic search methods used.			
7.	A Bayesian Belief Network utilizes a to define the probability distributions for	1	KI	CO4
	each node.			
	(a) Linear Regression Table (b) Conditional Probability Table			
0	(c) Decision Tree (d) Markov Matrix	7	1/1	001
8.	is the purpose of applying regularization techniques in the EM algorithm.	1	<i>K1</i>	CO4
	(a) To increase the likelihood of overfitting. (b) To speed up convergence.			
	(c) To avoid singularity issues and improve stability.			
0	(d) To decrease the likelihood of finding the global minimum.	1	K1	CO5
9.	In K-Nearest Neighbors, increasing the value of 'K' generally	1	K1	COS
	(a) Increases model complexity (b) Padvage noise impact but may blue class boundaries			
	(b) Reduces noise impact but may blur class boundaries(c) Makes the model more sensitive to outliers (d) Decreases bias			
10	In FOCL, the purpose of using background knowledge is to	1	K1	CO6
10.		-		000
	(a) Increase the size of the hypothesis space(b) Eliminate irrelevant features and guide search			
	(c) Make the learning unsupervised			
	(d) Generate random hypotheses			
	(a) Conclude fundom hypotheses			

PART - B $(12 \times 2 = 24 \text{ Marks})$

Answer ALL Questions

		Answer ALL Questions			
11.	Defin	e Machine Learning.	2	<i>K1</i>	CO1
12.	2. Differentiate supervised and unsupervised learning with an example.				
13.	. Mention the issues in Decision tree learning.				
14.	Point out the algorithms of concept learning.				
15.	15. Does the Back propagation learning algorithm guarantee to find the global optimum solution? Justify your answer.				CO3
16.	16. Describe with an example Neural network representation.				
17.	7. Name the Bayes optimal classification.				
18.	8. Give the formulas of basic probability.				
19.	Demo	onstrate the radial basis function network.	2	K2	CO5
20.	Give	the advantages of instance based methods.	2	<i>K1</i>	CO5
21.	•				CO6
22.		ralize induction as inverted deduction.	2	K2	CO6
		$PART - C (6 \times 11 = 66 Marks)$			
20		Answer ALL Questions	11	W)	CO.1
23.	a)	Analyze the types of machine learning with example for each.	11	<i>K3</i>	CO1
		OR		***	
	b)	Outline the concept of Deep Learning and Deep Reinforcement Learning to accelerate learning in complex environments.	11	<i>K3</i>	CO1
24.	a)	Discuss in detail the Candidate–Elimination Algorithm with an example. OR	11	K2	CO2
	b)	Write a short note on Heuristic Space tools for Machine Learning with an algorithm.	11	K2	CO2
25.	a)	Analyze the multi-layer perceptron model with a neat diagram.	11	К3	СОЗ
	b)	OR Concrelize the models of evalution and learning in Constitution	11	K3	CO3
	b)	Generalize the models of evolution and learning in Genetic algorithm.	11	KS	003
26.	a)	Examine in detail about maximum likelihood algorithm. OR	11	К3	CO4
	b)	Illustrate with an example why Gibbs Algorithm is better than the Bayes Optimal classifier.	11	<i>K</i> 3	CO4
27.	a)	Evaluate the inductive bias of k-Nearest neighbor algorithm with example. OR	11	К3	CO5
	b)	Accesses the Locally weighted regression model.	11	К3	CO5
	0)	recesses the Locally weighted regression model.			
28.	a)	Formulate the concept of inverting resolution model. OR	11	К3	CO6
	b)	Express in detail about the Temporal Difference Learning model with an example.	11	К3	CO6