Dog No								
Reg. No.								

Question Paper Code 13674

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

Electronics and Communication Engineering 20ECPC301 - DIGITAL ELECTRONICS

Regulations - 2020

	Regulations - 2020						
D	uration: 3 Hours Max	k. Mar	ks: 10	00			
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Marks	<i>K</i> –	co			
	Answer ALL Questions						
1.	The binary representation of BCD number 00101001 (decimal 29) is	1	<i>K</i> 2	CO1			
2	(a) 0011101 (b) 0110101 (c) 1101001 (d) 0101011	1	K1	COL			
2.	The number of min terms for an expression comprising of 3 variables? (a) 8 (b) 3 (c) 0 (d) 1	1	K1	CO1			
3.	(a) 8 (b) 3 (c) 0 (d) 1 If minuend = 0, subtrahend = 1 and borrow input = 1 in a full subtractor then the borrow	1	K2	CO2			
Э.	output will be						
	(a) 0 (b) 1 (c) Floating (d) High Impedance						
4.	If two inputs are active on a priority encoder, which will be coded on the output?	1	<i>K</i> 2	CO2			
	(a) The higher value (b) The lower value (c) Neither of the inputs (d) Both of the inputs						
5.	The logic circuits whose outputs at any instant of time depends only on the present input	1	<i>K1</i>	CO3			
	but also on the past outputs are called						
6	(a) Combinational circuits (b) Sequential circuits (c) Latches (d) Flip-flops	1	K1	CO3			
6.	Which of the following is not present in the state table? (a) Input (b) Present state (c) Output (d) Previous state	1	K1	003			
7.	A ripple counter's speed is limited by the propagation delay of	1	K2	CO4			
,.	(a) Each flip-flop (b) All flip-flops and gates						
	(c) The flip-flops only with gates (d) Only circuit gates						
8.	Which one is the suitable to detecting the hazard in circuit?	1	<i>K1</i>	CO4			
	(a) Karnaugh map (b) Boolean expression (c) Logic gates (d) None of these						
9.	In FPGA, vertical and horizontal directions are separated by	1	<i>K1</i>	CO5			
1.0	(a) A line (b) A channel (c) A strobe (d) A flip-flop	7	1/1	<i>CO</i> (
10.	Which of the following majorly determines the number of emitters in a TTL digital	1	K1	CO6			
	circuit? (a) Fan – in (b) Fan – out (c) Propagation delay (d) Noise immunity						
	(a) I all file (b) I all out (c) I Topagation delay (d) I voise inimianity						
	$PART - B (12 \times 2 = 24 Marks)$						
	Answer ALL Questions						
	Convert $(115)_{10}$ and $(235)_{10}$ into hexadecimal numbers.	2		CO1			
12.	Express the function Y=A+ B'C in canonical POS.	2	K2	CO1			
13.	Implement full adder using half adders.	2	K2	CO2			
14.	Convert a two-to-four line decoder with enable input to 1:4 Demultiplexer.	2	K2	CO2			
15.	5. Construct a NAND based logic diagram of JK FF.						
16.	6. Write the differences between Mealy and Moore circuits.						
17.	With an example interpret the critical race condition in asynchronous sequential circuits.	2	K2	CO4			
18.	18. List the different techniques used in State assignment.						
19.	Classify Asynchronous sequential circuits.	2	K2	CO5			
20.	What are the advantages of pulse mode circuits?	2	K1	CO5			
	What is programmable logic array?	2	K1	CO6			
			126	_ ,			
***	D 1 770 77 1 1 770 1 1 771 1 1 775 1 1 776 0		17/	7.4			

PART - $C(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23. a) Using K-map method, Reduce the following Boolean function $F=\sum m(0,2,3,6,7) + II K2 COI d(8,10,11,15)$ and obtain minimal SOP.

OR

- b) Determine the minimal Sum of Products for the following function II K2 COI $F(w,x,y,z)=\sum m(1,3,4,5,9,10,11)+\sum d(3,4)$ using Quine McCluskey method.
- 24. a) Explain the principle and design of 4 bit Parallel binary adder with diagrams.

OR

- b) Design and implement the circuit using multiplexer which has 3 inputs (A,B,C) and 11 K2 CO2 one output Z. The output is HIGH, when the input is less than 3, otherwise 0.
- 25. a) Determine the state table, characteristic table and an excitation table for D Flip Flop. 11 K2 CO3

OR

- b) Elaborate the operation of universal shift register with neat block diagram.
- 26. a) Using D flip-flop, Design a synchronous counter which counts in the sequence 11 K2 CO4 000,001,010,011,100,101,111,000.

OR

- b) What is a Hazard? Give hazard free realization for the following Boolean function. F 11 K2 CO4 (A, B, C, D) = \sum m (1,5,6,7) using AND- OR gate network.
- 27. a) Analyze an asynchronous sequential circuit with 2 inputs T and C. The output attains 11 K4 CO5 a value of 1 when T=1 and C moves from 1 to 0 Otherwise, the output is 0.

OR

- b) Analyze Asynchronous Fundamental and Pulse mode sequential circuits with 11 K4 CO5 example.
- 28. a) Write the simplified form of Boolean functions, F1(x, y, z) = \sum (0, 1, 3, 5); F2(x, y, 11 K4 CO6 z) = \sum (3, 5, 7) and obtain its circuit using 3×4×2 PLA.

OR

b) Analyze different logic families and their characteristics.