Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13638

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

Electronics and Communication Engineering

(Common to Fourth Semester - Computer and Communication Engineering)

20ECPC302 - ELECTROMAGNETIC FIELDS AND WAVEGUIDES

Regulations - 2020

Du	ration: 3 Hours Ma	ax. Ma	rks:	100		
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$		<i>K</i> –	CO		
	Answer ALL Questions	Marks	Level	CO		
1.	When two vectors are perpendicular, their	1	<i>K1</i>	CO1		
	(a) Dot product is zero (b) Cross product is zero					
	(c) Both are zero (d) Both are not necessarily zero	,	7/2	001		
2.	A charge located at point p (5, 30°, 2) is said to be in which coordinate system?	1	K2	CO1		
2	(a) Cartesian system (b) Cylindrical system (c) Spherical system (d) Space system Find the Course law for $D = 5r^2/4$ in order or director with $r = 4r$ and $0 = 7/2$	1	K2	CO2		
3.	Evaluate Gauss law for D = $5r^2/4$ i in spherical coordinates with r = 4m and $\theta = \pi/2$. (a) 600 (b) 599.8 (c) 588.9 (d) 577.8	1	K2	CO2		
4.	Gauss law can be used to compute which of the following?	1	K1	CO2		
'.	(a) Permittivity (b) Permeability (c) Radius of Gaussian surface (d) Electric potential					
5.	A dielectric can be made a conductor by	1	<i>K1</i>	CO3		
	(a) Compression (b) Heating (c) Doping (d) Freezing					
6.	The capacitance of a material refers to	1	<i>K1</i>	CO3		
	(a) Ability of the material to store magnetic field					
	(b) Ability of the material to store electromagnetic field					
	(c) Ability of the material to store electric field					
7	(d) Potential between two charged plates	1	V1	CO4		
7.	The first Maxwell law is based on which law? (a) Ampere law (b) Faraday law (c) Lenz law (d) Faraday and Lenz law	1	K1	C <i>04</i>		
8.	(a) Ampere law (b) Faraday law (c) Lenz law (d) Faraday and Lenz law The Maxwell second equation that is valid in any conductor is	1	<i>K1</i>	CO4		
0.	(a) $\nabla XH = Jc$ (b) $\nabla X E = Jc$ (c) $\nabla X E = Jd$ (d) $\nabla XH = Jd$					
9.	For a dielectric, the condition to be satisfied is	1	<i>K</i> 2	CO5		
	(a) $\sigma/\omega \varepsilon > 1$ (b) $\sigma/\omega \varepsilon < 1$ (c) $\sigma = \omega \varepsilon$ (d) $\omega \varepsilon = 1$					
10.	The Bessel function is denoted by	1	<i>K1</i>	CO6		
	(a) $J_n(ha)$ (b) $J_m(ha)$ (c) $J_n(hb)$ (d) $J_m(hb)$					
	D. D.T. D. (12. 2. 24.15. 1.)					
	PART - B $(12 \times 2 = 24 \text{ Marks})$					
11	Answer ALL Questions State Stoke's theorem.	2	K1	CO1		
12.	Given a point in spherical coordinates, how would you calculate its corresponding	, 2	<i>K</i> 2	CO1		
12	Cartesian coordinates? Compare Poisson's and Laplace's equation.	2	<i>K</i> 2	CO2		
	• •					
	Give equation of Ohm's law in point form.	2	Kl	CO2		
	A parallel plate capacitor has an area of 0.8m^2 separation of 0.1mm with a dielectric for which $\epsilon_r = 1000$ & a field of 10 6 v/m. Calculate C.	. 2	K2	CO3		
16.	16. What are boundary conditions for electric fields?					
17.	Summarize the differential form of Maxwell's Equation.	2	K2	CO4		
18.	State Faraday's Law.	2	K1	CO4		

19.	Define	e phase velocity.	2	K1	CO5
20.	Define loss tangent of medium.			<i>K1</i>	CO5
21.	. Why rectangular waveguides preferred over circular waveguides?				CO6
22.	. What is a Circular Waveguide?				
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions			
23.	a)	Verify stokes theorem for the vector $A=4x$ a_x-2y^2 a_y+z^2 a_z taken over the cube bounded between $x=0$, $x=1$, $y=0$, $y=1$ and $z=0$, $z=1$.	11	К3	CO1
	b) (i)	Obtain the value of α if magnetic field B is a solenoid where	6	К3	CO1
		$B=25x a_x+12y a_y+\alpha z a_z$.			
	(ii)	Determine the gradient of scalar system $t = x^2y + e^z$ at point P (1, 5, 2).	5	<i>K3</i>	CO1
24.	a)	State and prove Gauss's Law and derive electric field intensity of straight line. OR	11	K2	CO2
	b)	Using Biot Savart's law, derive magnetic field intensity on the axis of a circular loop carrying current I.	11	K2	CO2
25.	a)	Consider an interface between two different dielectric mediums and evaluate the electric boundary conditions at the interface. OR	11	К3	CO3
	b) (i)	Given the potential V= $(10 \sin\theta \cos\phi)/r^2$. Estimate the electric flux density at	6	К3	СОЗ
	(ii)	(2, $\pi/2$, 0). Solve the energy stored in a 10 μF capacitor which has been charged to a voltage of 400V.	5	К3	CO3
26.	a)	Use the fact that the divergence of the electric and magnetic fields is zero in free space to analyze a wave equation for both electric and magnetic fields. OR	11	К3	CO4
	b)	Examine the differential and integral forms of Maxwell's equations.	11	К3	CO4
27.	a)	Use Poynting theorem to examine the relationship between the electric and magnetic fields in terms of energy transport. \mathbf{OR}	11	К3	CO5
	b)	Examine the propagation of electromagnetic plane waves in lossless dielectrics compared to good conductors.	11	К3	CO5
28.	a)	Derive the propagation of TE waves in a rectangular waveguide with necessary expressions for the field components.	11	K2	CO6
	L١	OR Derive the TM field commonents using Descal equation in circular views and des	11	K2	CO6
	b)	Derive the TM field components using Bessel equation in circular waveguides.	11	NΔ	000