	_								
									1
Reg. No.									

Question Paper Code 13460

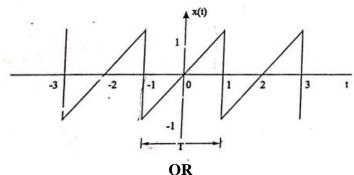
B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

Electronics and Communication Engineering 20ECPC303 - SIGNALS AND SYSTEMS

Regulations - 2020

Du	Max. Marks: 100				
	Manks	<i>K</i> –	co		
	Answer ALL Questions	Marks			
1.	The type of systems which are characterized by input and the output quantized at certain	1	K1	CO1	
	levels are called as				
	(a) analog (b) discrete (c) continuous (d) digital	_			
2.	In real valued function and complex valued function, time is	1	KI	CO1	
_	(a) Real (b) Complex (c) Imaginary (d) Not predictable		77.1	G02	
3.	If the fourier transform of $x(t)$ is $X(f)$, then the fourier transform of $dx(t)/dt$ is	1	KI	CO2	
	(a) $j2\pi fX(f)$ (b) $jfX(f)$ (c) $-jfX(f)$ (d) $-j2\pi X(f)$,	77.1	G02	
4.	The CTFT of a signal x(t) is represented by which variable?	1	KI	CO2	
_	(a) $F(\omega)$ (b) $X(\omega)$ (c) $X(t)$	1	K1	CO3	
5.	Laplace transform of a unit step function is	1	K1	COS	
	(a) 1 (b) s (c) 1/s (d) None of the mentioned	1	V1	CO3	
6.	Find the fourier transform of the $F[2sgn(t)]$?	1	K1	COS	
7	(a) $2/j\omega$ (b) $4/j\omega$ (c) $1/j\omega$ (d) $8/j\omega$	1	K1	CO4	
7.	The BIBO stability of a system is determined from its	1	K1	CO4	
0	(a) Impulse response (b) Input (c) Output (d) None of the mentioned	. 1	K1	CO4	
8.	In s-domain if the transfer function of an LTI system is given, then the impulse response	. 1	IX I	004	
	can be found by finding theof transfer function.				
	(a) Fourier transform (b) Inverse Fourier transform (c) London transform (d) Inverse London transform				
0	(c) Laplace transform (d) Inverse Laplace transform	1	K1	CO5	
9.	When do DTFT and ZT are equal? (a) When $\sigma = 0$ (b) When $r = 1$ (c) When $\sigma = 1$ (d) When $r = 0$	1	IX I	COS	
10	Find the convolution of $x(n) = \{4,-2\}$ and $h(n) = \{-2,4,2\}$.	1	K1	CO6	
10.	(a) $\{-14,20,0,-7\}$ (b) $\{-18,45,0,-9\}$ (c) $\{-8,20,0,-4\}$ (d) none of the mentioned	1	***	000	
	(a) {-14,20,0,-7} (b) {-16,43,0,-9} (c) {-6,20,0,-4} (d) none of the mentioned				
	$PART - B (12 \times 2 = 24 Marks)$				
	Answer ALL Questions				
11.	Check Whether the following system is Time Invariant and Causal: $y(t)=x(e^{-t})$.	2	<i>K</i> 2	CO1	
12.	Sketch the following signals : $rect(t+1)/4$ and $5r(t/2)$.	2	<i>K</i> 2	CO1	
13.	State the conditions for the existence of Fourier series.	2	Kl	CO2	
14.	Write the equations for trigonometric & exponential Fourier series.	2	<i>K</i> 2	CO2	
15.	Find the Laplace transform of the signal, $x(t)=e^{at}u(t)$.	2	<i>K</i> 2	CO3	
16.	List out any four properties of Fourier Transform.	2	K1	CO3	
17.	Consider the LTI system with transfer function $H(S) = \frac{1}{(s+1)(s-3)}$	2	<i>K</i> 2	CO4	
	Re(s)>3, determine $h(t)$.				
18.	What are all the steps involved in Convolution Integral?	2	K1	CO4	
19.	What is the main condition to avoid aliasing?	2	K1	CO5	
20.	Write the condition for existence of DTFT.	2	<i>K1</i>	CO5	
21.	Differentiate between DFT and DTFT.	2	K2	CO6	
22.	State the condition for an LTI discrete time system to be causal and stable in terms of	2	K2	CO6	
	ROC.				


$PART - C (6 \times 11 = 66 Marks)$

Answer ALL Questions

- 23. a) Find out whether the following signals are periodic or not. If periodic find the 11 K2 CO1 period
 - (i) $x(t) = 2\cos(10t+1)-\sin(4t-1)$
 - (ii) $x(n) = \cos(0.1\pi n)$

OR

- b) Given the input –output relationship of a continuous time system y (t) =t x (-t). 11 K2 CO1 Determine whether the system is causal, stable and linear and time invariant.
- 24. a) Calculate the trigonometric Fourier Series for the periodic signal shown in figure. 11 K2 CO2

- b) Determine the exponential Fourier series for the signal $f(t) = e^{-t}$, $0 \le t \le 0.5$.
- 11 K2 CO2

CO3

- 25. a) Find the Fourier transform of the signal
 - $x(t) = cos\Omega_o t \ u(t)$

OR

- b) Find the inverse Laplace transform of $X(s) = \frac{4}{(s+2)(s-4)}$ if the ROC is
- 11 K2 CO3

- (i) $-2 > Re\{s\} > -4$
- (ii) $Re\{s\} < -4$
- 26. a) Convolve the following signals $x(t) = e^{-5t} u(t)$ and h(t) = u(t+5).

11 K3 CO4

OR

- b) A System is described by the following differential equation. II K3 CO4 $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 7y(t) = \frac{dx(t)}{dt} + x(t)$. Determine Impulse response of the system and output response of the system for the input signal $x(t) = e^{-4t}u(t)$.
- 27. a) Prove the sampling theorem and explain how the original signal can be 11 K2 CO5 reconstructed from the sampled version with necessary illustrations.

OR

b) Compose the inverse z-transform of

11 K2 CO5

$$x(z) = \frac{1+2z^{-1}}{1-2z^{-1}+z^{-2}}$$
 when x(n) is anti-causal.

28. a) Find the impulse response, frequency response, magnitude response and phase response of the second order system.

$$y(n) - y(n-1) + \frac{3}{16}y(n-2) = x(n) - \frac{1}{2}x(n-1)$$

OR

b) Find the cascade and parallel of system described by the difference equation 11 K3 CO6 y(n)=0.75y(n-1)-0.125y(n-2)+x(n)+7x(n-1)+x(n-2).