Reg. No.																	
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13541

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fifth Semester

Electronics and Communication Engineering

20ECPC502 - VLSI DESIGN

Regulations - 2020

ъ	ration: 3 Hours	, ,	r 1	100					
Dur	Aax. M	larks	: 100						
	Marks	K-	co						
	Answer ALL Questions								
1.	Select the correct option: The n-MOS transistor is made up of	1	K1	CO1					
	(a) N-type source, n-type drain, and p-type bulk								
	(b) N-type source, p-type drain, and p-type bulk								
	(c) P-type source, n-type drain, and n-type bulk								
	(d) P-type source, p-type drain, and n-type bulk								
2.	Which is the longest delay in the adder process?	1	K1	CO1					
	(a) Sum delay (b) Carry delay (c) Propagation delay (d) Inverter delay								
3.	Identify the role of the n-MOS transistor in a CMOS logic circuit:	1	K1	CO2					
	(a) Load (b) Pull up the network								
	(c) Pull down the network (d) Not used in CMOS circuits								
4.	When both nMOS and pMOS transistors of CMOS logic design are in the OFF condition	, 1	<i>K1</i>	CO2					
	the output is:								
	(a) 1 or Vdd or HIGH state (b) 0 or ground or LOW state								
	(c) High impedance or floating (Z) (d) None of the mentioned								
5.	Recognize the type of clocking scheme used in clocked sequential circuits:	1	K1	CO3					
	(a) Two-phase overlapping clock (b) Two-phase non-overlapping clock								
	(c) Four-phase overlapping clock (d) Four-phase non-overlapping clock								
6.	New data are applied to a computational circuit in intervals determined by	y 1	K1	CO3					
	the maximum propagation delay of the computational circuit.								
	(a) Synchronous Pipelining (b) Asynchronous Pipelining								
	(c) Both a and b (d) None of the above								
7.	Which of the following tools are used to create physical designs and deploy digital	1	K1	CO4					
	systems?								
	(a) Verification tools (b) Place and route tools								
	(c) Time analysis tools (d) Synthesis tools								
8.	Identify the architecture used to design VLSI.	1	K1	CO4					
	(a) System on a device (b) Single open circuit								
	(c) System on a chip (d) System on a circuit								
9.	What is the design flow of a VLSI system?								
	(a) architecture design (b) market requirement	1	KI	CO5					
	(c) logic design (d) HDL coding								
	Recall the expression for diffusion capacitance.	1	K1	CO6					
10.	(a) Area capacitance (b) Peripheral capacitance								
	(c) Fringing field capacitance (d) Area capacitance + peripheral capacitance								
$PART - B (12 \times 2 = 24 Marks)$									
11.	Answer ALL Questions Discuss about CMOS logic.	2	<i>K</i> 2	CO1					
	Compare the RC delay and Elmore delay models.	2	<i>K</i> 2	CO1					
12.	compare the tee delay and Dimore delay models.								

13.	Outlin	e a ratioed circuit with an example.	2	K2	CO2	
14.	Explain the dual rail domino in MOS logic.					
15.	Classify the types of latches and explain anyone.					
16.	Identify the timing issues in synchronous design.					
17.	Discuss the basic concepts of Verilog.					
18.	Discu	ss gate delays in hardware description languages (HDLs).	2	K2	CO4	
19.	Descr	ibe the relationship between power and speed trade-offs.	2	K2	CO5	
20.	Discu	ss about the data paths in arithmetic building blocks.	2	K2	CO5	
21.	Expla	in the term memory core in memory architecture.	2	K2	CO6	
22.	Sumn	narize the design procedure for memory.	2	K2	CO6	
		PART - C $(6 \times 11 = 66 \text{ Marks})$				
22	-) (:)	Answer ALL Questions	7	<i>K</i> 2	CO1	
23.	a) (1)	Describe the concept of channel I–V and C–V characteristics of the MOS transistor in detail.				
	(ii)	Explain the principles of layout design rules with suitable examples. OR	4	K2	CO1	
	b) (i)	Summarize in detail the layout diagram and stick diagram of a gate with a neat sketch.	7	K2	CO1	
	(ii)	Express the importance of parasitic delay and delay in logic gate.	4	K2	CO1	
24.	a)	Express about the implementation of cascode voltage switch logic (DVSL) and pass transistor logic (PTL).	11	K2	CO2	
		OR				
	b)	Explain the concept of DCVSPG and DPL in detail with neat sketches.	11	K2	CO2	
25.	a)	Explain the different types of power architecture of sequential circuit design. OR	11	K2	CO3	
	b)	Explain the principles of monostable and a stable sequential circuit.	11	<i>K</i> 2	CO3	
	-/					
26.	a)	Examine the fundamentals of system tasks and compiler directives in detail with suitable examples.	11	К3	CO4	
		OR				
	b)	Illustrate continuous assignments and delays in dataflow modeling.	11	<i>K3</i>	CO4	
27.	a)	Illustrate and design multipliers, shifters, and ALUs in arithmetic building blocks with diagrams.	11	К3	CO5	
		OR				
	b)	Demonstrate the design trade-offs and justify your reasoning with suitable examples.	11	К3	CO5	
28.	a)	Discuss about the design of various memory architectures and building blocks in detail with neat sketches.	11	K2	CO6	
		OR				
	b)	Describe the importance of memory peripheral circuitry in detail with diagrams.	11	K2	CO6	