Question Paper Code 13628

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Sixth Semester

Electronics and Communication Engineering 20ECPC601 - TRANSMISSION LINES AND ANTENNAS

Regulations - 2020

Dι	uration: 3 Hours Ma	ıx. Mar	ks: 10	00					
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$	14. 7	<i>K</i> –	CO.					
	Answer ALL Questions	Marks							
1.	Find propagation constant of a 1m long transmission line, if the input impedance of short	1	<i>K</i> 2	CO1					
	and open circuited transmission lines are 25Ω and 9Ω respectively.								
	(a) 0.693 -j 1.57Ω (b) 12.34 +j 36.78Ω (c) 16.42 +j 3.42Ω (d) 39.635 +j 60.52Ω		***	G01					
2.	The receiving end impedance is infinite for transmission line.	1	K1	CO1					
	(a) short circuited (b) open circuited (c) both open and short circuited (d) poither open per short circuited								
2	(c) both open and short circuited (d) neither open nor short circuited Find the value of reflection coefficient, if SWR is 4.	1	K2	CO2					
3.	(a) 0.9 (b) 0.5 (c) 0.6 (d) 0.4	1	M2	002					
4.	In an impedance Smith chart, a clockwise movement along a constant resistance circle	1	K1	CO2					
••	gives rise to								
	(a) a decrease in the value of reactance (b) an increase in the value of reactance								
	(a) a decrease in the value of reactance (b) an increase in the value of reactance (c) no change in the reactance value (d) no change in the impedance value								
5.	antennas are utilized in high frequencies.	1	K1	CO3					
	(a) Wire antennas (b) Aperture antennas (c) Microstrip antennas (d) Array antennas								
6.	At which angles does the front to back ratio specify an antenna gain?	1	K1	CO3					
7	(a) 0° & 180° (b) 90° & 180° (c) 180° & 270° (b) 90° & 360°	. 1	<i>K1</i>	CO4					
7.	The Broadside array is defined as an array having maximum radiation the axi	is I	K1	C <i>04</i>					
	array. (a) Perpendicular to (b) Along (c) Parallel (d) None of the above								
8.	The amplitudes will be in the resultant pattern using the principle of	1	K1	CO4					
0.	multiplication of patterns.								
	(a) Out of phase (b) Linear (c) Added (d) Multiply								
9.	The quality factor of microstrip antennas is	1	K1	CO5					
	(a) high (b) very high (c) very low (d) unity								
10.	Which of the following antenna parameters is not adjustable for reconfigurable antennas?		K1	CO6					
	(a) Frequency of operation (b) Radiation pattern (c) Polarization (d) Impedance	;							
	$PART - B (12 \times 2 = 24 Marks)$								
11	Answer ALL Questions Illustrate the need for inductance loading of telephone cable.	2	K2	CO1					
		2	K1	COI					
	Define frequency and phase distortion in a transmission line.								
13.	State the expressions for capacitance and inductance of coaxial cable.	2	K1	CO2					
14.	Define standing waves, SWR, nodes and antinodes.	2	<i>K1</i>	CO2					
15.	The radiation resistance of an antenna is 70 Ω and loss resistance is 10 Ω . Calculate the	e 2	K2	CO3					
	directivity in dB, if the power gain is 25.								
16.	Compare Radian and Steradian.	2	<i>K</i> 2	CO3					
17.	Infer why we need an antenna array.	2	<i>K</i> 2	CO4					
18.	Find the directivity of broadside forms of arrays when a uniform linear array contains 5 isotropic radiation with an inter element spacing of $\frac{1}{2}$	0 2	K2	CO4					
	isotropic radiation with an inter element spacing of $\lambda/2$.		100	30					
K1 –	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		1362	28					

		the impedance of a slot antenna, for L=0.10 λ and L/W ratio very high.	2	K2	COS
		the different types of feeds used in microstrip patch antenna.	2	K1	COS
21.	The laye	critical frequency for an ionized layer is 6 MHz. Determine the electron density of the	2	<i>K</i> 2	CO6
22.	•	ne LPDA. Why is it called so?	2	Kl	COC
		DADT C (C v. 11 (C Morbs)			
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions			
23.	a)	Obtain the true useful forms of equations for voltage and current at any point on a transmission line.	11	K2	COI
		OR			
	b)	Explain in detail, the primary constants and secondary constants of a transmission line. Derive the expression to show the relation between them.	11	K2	COI
24.	a)	Derive the voltage and current equations of dissipation less line.	11	K2	CO2
	/	OR			
	b)	Summarize the properties and applications of a Smith Chart.	11	K2	CO2
25.	a)	Derive the power radiated from the field equations and hence obtain the radiation resistance of half wave dipole.	11	K2	CO3
		OR			
	b)	Define the following parameters and explain their dependence on an antenna performance (i) Radiation Power Density (ii) Bandwidth (iii) Aperture area.	11	K2	CO3
26.	a)	Determine the excitation coefficients and directivity, of a seven element binomial array separated by $\lambda/2$.	11	К3	CO4
		OR			
	b)	Derive the expression for the field pattern and draw the radiation pattern of an end fire array with 4 isotropic sources of equal amplitude and equal spacing.	11	К3	CO4
27.	a)	Explain in detail, the construction, working principle and the performance of a parabolic reflector.	11	K2	CO5
		OR			
	b)	With a neat diagram, explain the working principle of microstrip patch antenna.	11	K2	COS
28.	a)	With necessary equations, illustrate the design concepts of a helical antenna. Explain the effect of each parameter on the performance of the antenna. OR	11	K2	C06
	b)	Explain how electromagnetic waves are propagated in the troposphere layer and outline the principle of troposcatter propagation.	11	K2	COC