Reg. No.								

Question Paper Code 13427

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Seventh Semester

Electronics and Communication Engineering 20ECPC702 - OPTICAL COMMUNICATION

Regulations - 2020

Du	ration: 3 Hours	Max. Mai	rks: 1	00					
20	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$								
	Answer ALL Questions	Marks	K – Level	co					
1.	The fundamental mode of an optical fiber is	1	K1	CO1					
	(a) HE_{11} (b) LP_{11} (c) LP_{10} d) LP_{02}								
2.	What is the numerical aperture of the fiber if the angle acceptance is 16°?	1	K2	CO1					
	(a) 0.5 (b) 0.36 (c) 0.2 (d) 0.27								
3.	Which optical phenomenon causes the formation of a rainbow (splitting of white li	ght ¹	K1	CO2					
	into multiple colours)?	1 4							
1	(a) Total internal reflection (b) Refraction of light (c) Interference (d) Dispersion of light (varieties, of refractive index of the core material as function of wavelength can		K1	CO2					
4.	Variation of refractive index of the core material as function of wavelength cau	seu ¹	11.1	002					
	(a) Polarization mode dispersion (b) Material dispersion								
	(c) waveguide dispersion (d) Intermodal dispersion								
5.	The quantum efficiency of LED is defined as the ratio of	1	K1	CO3					
	(a) Number of photons emitted out/ Number of photons injected in,								
	(b) Number of photons injected out/ Number of photons emitted in								
	(c) Number of photons emitted out*Number of photons injected in								
	(d) None of the above	7	V1	CO2					
6.	Which laser emits light in the visible region 400nm to 700nm?	1	<i>K1</i>	CO3					
	(a) Argon-ion (b) Nitrogen (c) Carbon-dioxide (d) Neodymium-YA	G							
7.	A PIN diode consists of	1	K1	CO4					
	(a) heavily doped p region, lightly doped n region separated by high resistivity materia								
	(b) lightly doped p region, heavily doped n region separated by low resistivity material								
	(c) heavily doped p and n regions separated by high resistivity material								
8.	(d) heavily doped p region, lightly doped n region separated by low resistivity material		K1	CO4					
0.	In photo detectors, energy of incident photons must be band energy.	gap 1	111	001					
	(a) less than (b) greater than (c) same as (d) negligible								
9.	In V-Groove mechanical splice technique, the prepared fiber ends are butted together in	n a 1	K1	CO5					
	·								
	(a) Perpendicular groove (b) U-shaped groove (c) V-shaped groove (d) Parallel groo								
10.	All-optical networking leverages to enable faster and more efficient of	lata ¹	KI	CO6					
	transmission.								
	(a) WDM (b) TDM (c) FDM (d) QAM PART P. (12 × 2 - 24 Monto)								
PART - B $(12 \times 2 = 24 \text{ Marks})$ Answer ALL Questions									
11.	State linearly polarized mode.	2	<i>K1</i>	CO1					
	Distinguish meridional rays and skew rays.	2	K2	CO1					
	Discuss about mode coupling. What causes it?	2	K1	CO2					
	• •	2	K1	CO2					
14.	Define cut-off wavelength.	2	17.1	CO2					

15.	State	the reason why direct band gap material is preferred for optical sources?	2	<i>K1</i>	CO3	
16.	. List any four required properties of light sources used in the optical communication.					
17.	. State dark current noise.					
18.	. List the various error sources in the optical receiver.					
19.	9. What are the different techniques for fiber diameter measurement?					
20.	Comp	pare cutback technique and insertion loss method.	2	KI	CO5	
21.	State	the concepts of wavelength division multiplexing.	2	K1	CO6	
22.						
		PART - C (6 × 11 = 66 Marks) Answer ALL Questions				
23.	a)	Explain ray theory transmission in an optical communication; with neat diagram explain acceptance angle numerical aperture and total internal reflection using Snell's law with relevant figures and calculations. OR	11	K2	CO1	
	b)	With the help of the block diagram, explain the different components of an optical fiber link.	11	K2	CO1	
24.	a)	mechanisms in optical fiber.	11	K2	CO2	
	• .	OR	11	W2	G02	
	b)	Derive the expressions for material and waveguide dispersion and explain them.	11	K2	CO2	
25.	a)	With a neat sketch, discuss the structure and working principle of surface emitting LED and Edge emitting LED.	11	K2	СОЗ	
		OR				
	b)	Discuss about the mechanism behind lasing operation. Derive rate equation and obtain quantum efficiency of laser diode.	11	K2	CO3	
26.	a)	Explain about the various types of preamplifiers available for optical networks. Explain any three of them with their circuit diagrams. OR	11	K2	CO4	
	b)	Draw the structures of Pin and APD photo detectors and explain their operations.	11	K2	CO4	
27.	a)	Explain the various methods used for fiber attenuation measurements. OR	11	K2	CO5	
	b)	Explain the measurement technique used in the case of fiber cut-off wavelength and numerical aperture.	11	K2	CO5	
28.	a)	Explain principles of Solitons and discuss the Soliton parameters with necessary expressions and diagrams.	11	K2	CO6	
		OR				
	b)	Briefly explain the SONET frame structures and SONET rings with neat diagrams.	11	K2	CO6	