Reg. No.																	
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code	13523
----------------------------	-------

B.E. / B.Tech. - DEGREE EXAMINATIONS, APR / MAY 2025

Third Semester

Electronics and Communication Engineering

20ECPW301 - R PROGRAMMING WITH LABORATORY

Regulations - 2020

	\mathcal{S}^{n}			
D	uration: 3 Hours	Iax. Mar	ks: 1	00
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	1 4 1	<i>K</i> –	CO
	Answer ALL Questions	Marks		
1.		1	K1	CO1
	> sqrt (-17)			
•	(a) -4.02 (b) 4.02 (c) NaN (d) 3.67	7	V I	COL
2.	Which of the following is used for Statistical analysis in R language?	1	K1	CO1
2	(a) R Studio (b) Studio (c) Heck (d) K Studio	1	K1	CO2
3.	initiates an infinite loop right from the start. (a) never (b) repeat (c) break (d) set	1	IX I	CO2
4.		1	<i>K1</i>	CO2
''	(a) The only way to exit a repeat loop is to call break			
	(b) Infinite loops should generally be avoided			
	(c) Control structures like if, while, and for allow you to control the flow of an R progra	ım		
	(d) All of the mentioned			
5.	Which function would you use to find the natural logarithm of each element in a nume	ric ¹	<i>K1</i>	CO3
	vector in R?			
_	(a) log() (b) exp() (c) log10() (d) abs()	1	W2	003
6.	Infer the following R code:	1	K2	CO3
	R			
	a <- c(1, 5, 3) b <- c(4, 2, 6)			
	result <- pmax(a, b)			
	What will be the value of result?			
	(a) $c(4, 5, 6)$ (b) $c(1, 2, 3)$ (c) $c(1, 2, 6)$ (d) $c(4, 5, 3)$			
7.	Which package in R provides advanced plotting functions like ggplot()?	1	<i>K1</i>	CO4
	(a) graphics (b) lattice (c) ggplot2 (d) plotrix			
8.	Which R function is primarily used to create graphs and visualizations?	1	<i>K1</i>	CO4
	(a) plot() (b) graph() (c) draw() (d) visualize()	1	17.1	005
9.	Which of the following R packages is commonly used for reinforcement learning?	1	K1	CO5
10	(a) caret (b) rpart (c) Rcpp (d) RL	1	K1	CO6
10.	Which type of spline is commonly used to fit data in R? (a) B-splines (b) C-splines (c) Linear splines (d) Smoothing splines	1	MI	000
	(a) B-spinies (b) C-spinies (c) Emeai spinies (d) Sinootining spinies			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	Enumerate the three different types of classes in R.	2	<i>K</i> 2	CO1
12.	List the various ways of creating a dataframe in R.	2	<i>K1</i>	CO1
13.	If g<-function(x)	2	<i>K1</i>	CO2
	return(x+1)			
	Infer the output for body(g), formals(g)			
14.	Explain the concept of recycling with appropriate examples	2	<i>K</i> 2	CO2
K1	- Remember: K2 - Understand: K3 - Apply: K4 - Apply: K5 - Fyaluate: K6 - Create		135	723

1.5	3371 4	is a markov chain?	2	K1	CO3			
		2	K1 K1	CO3				
		List various Set operations and functions in R.						
17.								
18.	coordinate pairs plotted. 18. Illustrate the use of legend() function and give the syntax for the same.							
		is a labelled dataset?	2	K1	CO5			
	20. Define the term overfitting in Machine learning?							
		e Chi-squared Distribution.	2	K1	CO6			
	21. Define Chi-squared Distribution. 22. Recall the importance of Covariance.							
22.	rtecur	The importance of covariance.						
		PART - C $(6 \times 11 = 66 \text{ Marks})$						
23.	a)	Answer ALL Questions Describe the Data Frame data structure in R with appropriate examples.	11	K2	CO1			
23.	a)	OR						
	b)		11	K2	CO1			
	U)	Elaborate the classes in R with examples.	11	N2	COI			
24.	۵)	Evaluin in datail with example godes the different, control statements in D	11	K2	CO2			
<i>2</i> 4.	a)	Explain in detail with example codes the different control statements in R.	11	112	002			
	b)	OR Explain with axample the naturn() in Decrete the proceeding for naturning multiple	11	K2	CO2			
	b)	Explain with example the return() in R, state the procedure for returning multiple values in R.	••	112	002			
25.	a)	Explain the differences between scan() and readline(), print() and cat().	11	K2	CO3			
		OR						
	b)	Illustrate the Linear algebraic operations that can be performed on Matrices.	11	K2	CO3			
26.	a)	Illustrate how graphs can be saved to files using appropriate R code and examples.	11	K2	CO4			
		OR						
	b)	Show graphically the different plots in R. Give the syntax of each to get a	11	K2	CO4			
	,	minimum of four plots in a single window using suitable R function.						
27.	a)	Explain K-Mean clustering algorithm and discuss the pros and cons of the same.	11	<i>K</i> 2	CO5			
		OR						
	b)	Explain the unsupervised learning algorithms with neat example.	11	K2	CO5			
28.	a)	Construct the Multiple regressions model with suitable example.	11	<i>K3</i>	CO6			
		OR						
	b)	Build the Random Forest model with suitable example.	11	<i>K3</i>	CO6			