Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13603

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth Semester

Electronics and Communication Engineering 20ECPW401 - ELECTRONIC CIRCUITS WITH LABORATORY

Regulations - 2020

		lations - 2020			_	
Duration: 3 Hours				x. Marks: 100		
	•	(10 \times 1 = 10 Marks) ALL Questions	Marks	K - Level	co	
1.	The operating point		1	<i>K1</i>	CO1	
	(a) Changes in temperature (b)	b) Does not change with temperature				
		l) Equals to infinity	_			
2.	Why is self bias circuit not used in IC amplific		1	KI	CO1	
	(a) To reduce power losses (b)	b) To reduce area used on the chip				
3.	(c) Stability factor reduces in the IC (c) Which transformer is used for impedance materials.		1	K2	CO2	
3.		c) same turn ratio (d) different turn ra				
4.	The total gain of a multistage amplifier is less			K2	CO2	
	stages due to					
	(a) Power loss in the coupling device (b)	b) Loading effect of the next stage				
		d) The use of many capacitors				
5.	What are oscillators?			KI	CO3	
6	(a) Switching circuits (b) Converts DC to AC Give the relation between output and input vo		ts 1	K1	CO3	
6.		trage of all oscillator: c) $V_0 = A_v/V_i$ (d) $A_v = V_0/V_i$	1	111	000	
7.	What happens to capacitive reactance when of		1	K2	CO4	
		c) Remains constant (d) goes to infinite				
8.	Which one of the following is false with respe		1	<i>K1</i>	CO4	
	(a) Reduces with decrease in size of lead wire	S				
	(b) Reduces when chip capacitors are used) I				
9.	(c) Increases when lead wires are lengthy (d Bistable multivibrator is in any state	·	1	K1	CO5	
9.		c) Saturated (d) Independent	1	111	005	
10.	Why do we use CE amplifier as a large signal	, , , , , , , , , , , , , , , , , , ,	1	<i>K1</i>	CO6	
	(a) It has very high output impedance (b	-				
	(c) It has very high voltage gain (c	d) It is very much stable				
	DADE D (12)	2 24 1 1				
	PART - B (12 × Answer ALL	•				
11.	Why is biasing necessary for a transistor to fur		2	K1	CO1	
12.	·	-	2	<i>K1</i>	CO1	
	13. Why multistage amplifiers are used instead of a single-stage amplifier?					
	14. List of application small signal analysis of CE Amplifier.					
15.			2	K1	CO3	
16.		scillator	2	K1	CO3	
	Apply the concept of 'Q' (quality factor) in the		2	K1	CO4	
	Design a stagger-tuned amplifier for a given fi		2	K2	CO4	
	Justify the different types of Multivibrators.		2	K2	CO5	
	– Remember; K2 – Understand; K3 – Apply; K4 – Analy.	ze; K5 – Evaluate; K6 – Create		13	603	

Estimate the suitable characteristics of Monostable Multivibrator.				
_		2	K2	CO
-	••	2	K2	CO
	PART - C (6 × 11 = 66 Marks) Answer ALL Questions			
a)	Explain the concept of DC load line analysis in transistor biasing circuits. How does the load line help in determining the operating point (Q-point) of a transistor? Illustrate with a neat circuit diagram and graph.	11	K2	COL
b)	Describe the role of resistors in a voltage divider bias circuit. How do they influence the base voltage and ensure thermal stability of the transistor? Illustrate with a circuit diagram.	11	K2	COL
a)	State the key parameters of the hybrid- π model for a Common Emitter amplifier. Write down the expressions for voltage gain, input impedance, and output impedance based on this model.	11	K2	CO2
b)	With a neat sketch explain the principle of operation of cascade amplifier and also derive an expression for its performance measures.	11	K2	CO2
a)	Explain the effect on gain, input resistance, and output resistance of Voltage series feedback amplifier with suitable block diagram. OR	11	K2	COS
b)	Evaluate the suitability of the Wien Bridge oscillator for generating low-frequency sine waves. Support your answer with a circuit diagram, derive the frequency of oscillation, and critically assess the role of component selection in maintaining stable oscillations.	11	K2	CO3
a)	Given the circuit of a single tuned amplifier, explain its operation and apply relevant formulas to derive expressions for voltage gain, gain-bandwidth product, and resonant frequency.	11	K2	CO4
b)		11	K2	CO4
U)	and Neutrodyne neutralization methods with relevant circuit diagrams.			
a)	Analyze the operation of a collector-coupled Astable multivibrator with the help of a neat circuit diagram. Derive the expression for its frequency and explain how each component influences the timing and waveform characteristics. OR	11	K2	COS
b)	Analyze the operation of a Schmitt Trigger circuit with the help of a neat diagram. Explain how hysteresis is introduced, and interpret the input and output waveforms to show how the circuit responds to varying input voltages.	11	K2	COS
a)	Design a transformer-coupled Class A power amplifier for a specific output power and load resistance. Derive the expression for efficiency and suggest modifications to improve performance.	11	K2	CO
b)	Design a push-pull Class B amplifier using transformer coupling to minimize even-order harmonics in the output. Explain the working and derive conditions under which harmonic cancellation is effective.	11	K2	CO
	Desig specif State (a) a) b) a) b) a) b) a) b) a)	Design a system that integrates both a voltage amplifier and a power amplifier for a specific application. State the important features of CLASS C power amplifiers. PART - C (6 × 11 = 66 Marks) Answer ALL Questions a) Explain the concept of DC load line analysis in transistor biasing circuits. How does the load line help in determining the operating point (Q-point) of a transistor? Illustrate with a neat circuit diagram and graph. OR b) Describe the role of resistors in a voltage divider bias circuit. How do they influence the base voltage and ensure thermal stability of the transistor? Illustrate with a circuit diagram. a) State the key parameters of the hybrid-π model for a Common Emitter amplifier. Write down the expressions for voltage gain, input impedance, and output impedance based on this model. OR b) With a neat sketch explain the principle of operation of cascade amplifier and also derive an expression for its performance measures. a) Explain the effect on gain, input resistance, and output resistance of Voltage series feedback amplifier with suitable block diagram. OR b) Evaluate the suitability of the Wien Bridge oscillator for generating low-frequency sine waves. Support your answer with a circuit diagram, derive the frequency of oscillation, and critically assess the role of component selection in maintaining stable oscillations. a) Given the circuit of a single tuned amplifier, explain its operation and apply relevant formulas to derive expressions for voltage gain, gain-bandwidth product, and resonant frequency. OR b) Discuss briefly the need for neutralization in tuned amplifiers. Explain Hazeltine and Neutrodyne neutralization methods with relevant circuit diagrams. a) Analyze the operation of a collector-coupled Astable multivibrator with the help of a neat circuit diagram. Derive the expression for its frequency and explain how each component influences the timing and waveform characteristics. b) Analyze the operation of a Schmitt Trigger circuit with the help of a neat dia	Design a system that integrates both a voltage amplifier and a power amplifier for a specific application. State the important features of CLASS C power amplifiers. PART - C (6 × 11 = 66 Marks) Answer ALL. Questions a) Explain the concept of DC load line analysis in transistor biasing circuits. How does the load line help in determining the operating point (Q-point) of a transistor? Illustrate with a neat circuit diagram and graph. OR b) Describe the role of resistors in a voltage divider bias circuit. How do they influence the base voltage and ensure thermal stability of the transistor? Illustrate with a circuit diagram. a) State the key parameters of the hybrid-π model for a Common Emitter amplifier. Write down the expressions for voltage gain, input impedance, and output impedance based on this model. OR b) With a neat sketch explain the principle of operation of cascade amplifier and also derive an expression for its performance measures. a) Explain the effect on gain, input resistance, and output resistance of Voltage series feedback amplifier with suitable block diagram. OR b) Evaluate the suitability of the Wien Bridge oscillator for generating low-frequency sine waves. Support your answer with a circuit diagram, derive the frequency of oscillation, and critically assess the role of component selection in maintaining stable oscillations. a) Given the circuit of a single tuned amplifier, explain its operation and apply relevant formulas to derive expressions for voltage gain, gain-bandwidth product, and resonant frequency. OR b) Discuss briefly the need for neutralization in tuned amplifiers. Explain Hazeltine and Neutrodyne neutralization methods with relevant circuit diagrams. a) Analyze the operation of a collector-coupled Astable multivibrator with the help of a neat circuit diagram. Derive the expression for its frequency and explain how each component influences the timing and waveform characteristics. OR b) Analyze the operation of a Schmitt Trigger circuit with the help of a nea	Design a system that integrates both a voltage amplifier and a power amplifier for a specific application. State the important features of CLASS C power amplifiers. PART - C (6 × 11 = 66 Marks)