Neg. No.

Question Paper Code 13650

B.E. / **B.Tech.** - **DEGREE EXAMINATIONS, APRIL** / **MAY 2025**

Fourth Semester

Electronics and Communication Engineering 20ECPW402 - LINEAR INTEGRATED CIRCUITS WITH LABORATORY

Regulations - 2020

Duration: 3 Hours			Max. Marks: 100						
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$		<i>K</i> –						
	Answer ALL Questions	Marks	Level	co					
1.	A closed-loop configuration in an op-amp involves:	1	K1	CO1					
	(a) Feedback (b) No feedback								
	(c) High output impedance (d) Infinite input impedance								
2.	The gain-bandwidth product for a typical IC 741 op-amp is approximately:	1	K1	CO1					
2	(a) 1kHz (b) 1MHz (c) 10MHz (d) 100 MHz	1	<i>K1</i>	cor					
3.	An adder circuit is also known as a:	1	K1	CO2					
1	(a) Summing amplifier (b) Voltage follower (c)Phase shifter (d) Differentiator A precision rectifier is also called a:	1	K1	CO2					
4.	(a) Half-wave rectifier (b) Peak detector (c) Super diode (d) Logarithmic amplifier	1	11.1	002					
5.	The Monolithic PLL IC 565 has a typical lock range of:	1	K1	CO3					
٥.	(a) 1Hz (b) 100Hz (c) 10kHz to 500kHz (d) 1MHz								
6.	Which component in a PLL ensures that the loop remains locked?	1	K1	CO3					
	(a) Phase detector (b) VCO (c) Loop filter (d) Feedback amplifier								
7.	A flash-type ADC is also known as:	1	K1	CO4					
	(a) Serial ADC (b) Successive approximation ADC								
	(c) Parallel ADC (d) Dual-slope ADC								
8.	Which type of DAC uses a binary-weighted resistor network?	1	K1	CO4					
	(a) Weighted Resistor DAC (b) R-2R Ladder DAC								
0	(c) Flash DAC (d)Current-mode DAC	1	<i>K1</i>	CO5					
9.	The output voltage of a 7805 voltage regulator is: (a) 5 mV (b) 5 V (c) 50 V (d) Variable	1	K1	COS					
10	The IC 555 timer can generate duty cycles between:	1	K1	CO6					
10.	(a) 50% and 100% (b) 10% and 50% (c) 0% and 100% (d) 0% and 50%								
	(a) 20/4 and 100/4 (b) 10/4 and 20/4								
PART - B $(12 \times 2 = 24 \text{ Marks})$									
	Answer ALL Questions								
11.	List the ideal characteristics of an operational amplifier.	2	K1	CO1					
12.	Define Slew Rate and what causes the slew rate.	2	K1	CO1					
13.	Justify that the gain of voltage follower is unity.	2	K2	CO2					
	Mention some of the non -linear applications of op – amps.	2	<i>K1</i>	CO2					
	List the applications of PLL.	2	<i>K1</i>	CO3					
16.	Discuss Variable transconductance technique.	2	K2	CO3					
17.	How would you justify, which type of ADC is the fastest?	2	<i>K1</i>	CO4					
18.	List the main advantages of integrating type ADCs.	2	<i>K1</i>	CO4					
19.	Define Line regulation.	2	<i>K1</i>	CO5					
20.	State the uses of switched capacitor filters.	2	<i>K1</i>	CO5					
21.	Compare Linear regulator and Switched mode regulator.	2	<i>K</i> 2	CO6					
22.	List the various applications of multivibrator.	2	<i>K1</i>	CO6					
K1 -	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		136.	50					

PART - C $(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23.	a)	Explain the AC Characteristics of op amp.	11	K2	CO1			
OR								
	b)	Write a note on stability criteria and frequency compensation technique applied in Op-amp.	11	K2	CO1			
24.	a)	With neat sketch explain the operation of an instrumentation amplifier.	11	K2	CO2			
		OR						
	b)	With neat diagram explain logarithmic amplifier and antilogarithmic amplifier.	11	K2	CO2			
25.	a)	configurations.	11	K2	CO3			
		OR						
	b)	How would you describe the block diagram of PLL and Discuss any three applications of PLL in detail.	11	K2	CO3			
26.	a)	Explain the working of R-2R ladder type DAC.	11	K2	CO4			
OR								
	b)	Explain the working of dual slope A/D converter with neat sketch.	11	K2	CO4			
27.	a)	Differentiate between the low pass, high pass and band pass filter. Sketch the frequency plot.	11	K2	CO5			
OR								
	b)	Explain about the sawtooth wave generator using IC741 with a neat sketch.	11	K2	CO5			
28.	a)	Explain the operation of astable multivibrator using IC741 with necessary diagrams. OR	11	K2	CO6			
	b)	Explain a wein bridge oscillator using RC network and bridge network with frequency of oscillation.	11	K2	CO6			