Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13660

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fifth Semester

Electronics and Communication Engineering

(Common to Sixth Semester - Computer and Communication Engineering)

20ECPW501 - DISCRETE TIME SIGNAL PROCESSING WITH LABORATORY

Regulations - 2020

PART - A (MCQ) (10 × 1 = 10 Marks) Answer ALL Questions 1. Compute the circular convolution of the sequences $X_1(n) = \{2,1,2,1\}$ and $X_2(n) = \{14,14,16,16\}$ (b) $\{16,16,14,14\}$ (c) $\{2,3,6,4\}$ (d) $\{14,12,14\}$ (e) $\{14,14,16\}$ (for both DIT & DIF algorithm.		ks K- Leve	_l co
Answer ALL Questions 1. Compute the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $X_2(n)=\{1,1,2,1\}$ and $X_2(n)=\{1,1,2,1\}$ (b) $\{1,1,2,1,4\}$ (c) $\{2,3,6,4\}$ (d) $\{1,1,2,2,4\}$ (e) $\{2,3,6,4\}$ (for equired for both DIT & DIF algorithm.	$(n) = \{1,2,3,4\}.$ 1 $(6,14,16)$		l co
(a) {14,14,16,16} (b) {16,16,14,14} (c) {2,3,6,4} (d) {14,1 2required for both DIT & DIF algorithm.	6,14,16}	K1	
2required for both DIT & DIF algorithm.	-		CO1
•	I		
$(\) \mathbf{D}' $ 1 $(\) \mathbf{N} $ 1 $(\) \mathbf{D} $ 1 $(\) \mathbf{D} $ 1 $(\) \mathbf{D} $ 1	D': 1	K1	CO1
	Bit reversal	<i>K1</i>	CO2
3. What is the Butterworth polynomial of order 1? (a) S+1 (b) S-1 (c) S (d) S(S+		K1	CO2
4. Which of the following is a disadvantage of Butterworth filters?	1	<i>K1</i>	CO2
(a) Sharp transition between passband and stopband (b) Non-linear pha	ase response		
(c) Unequal ripple in the stopband (d)Unequal ripple in			
5. Digital filters are	1	<i>K1</i>	CO3
(a) Highly expensive (b) Consumes very less (c) Programmable (d) Cannot handle low-fre			
6. In a cascade structure, IIR filters are implemented:	quency signals	<i>K1</i>	CO3
•	dback loops		
7. FIR filters	1	<i>K1</i>	CO4
are non-recursive (b) do not adopt any fee	edback		
(c) are recursive (d) use feedback	7	17.1	001
8. The well known design techniques of FIR filters are (a) Fourier series method, Window method and Frequency sampling method	<i>1</i> d	<i>K1</i>	CO4
) Bilinear transformation method	u		
) Impulse invariance method			
(d) Backward difference method			
9. The finite word length effects are due to	7	<i>K1</i>	CO5
(a) Quantization of input. (b) Quantization of coeff	ficients.		
(c) Quantization of Product. (d) All of the above.	1	<i>K1</i>	C06
10. DSP adoptsarchitecture. VLIW (b) Harvard (c) Von Neumann (d) 64 bit	1	K1	COO
VEIV (b) Harvard (c) Von Ivenmann (d) 04 bit			
$PART - B (12 \times 2 = 24 Marks)$			
Answer ALL Questions			
11. Define the twiddle factor of FFT.	2	K1	CO1
12. Draw the basic butterfly of DIT-FFT structure.	2	K2	CO1
13. Compare IIR and FIR filters.	2	K2	CO2
14. Write the properties of the Butterworth filter.	2	<i>K1</i>	CO2
15. What is the need for prewarping?	2	<i>K1</i>	CO3
Solve H(z) for the IIR filter whose $H(s) = \frac{1}{s+6}$ with T=0.1 sec transformation.	using Bilinear ²	К3	CO3

- 17. List out the advantages and disadvantages of FIR filters.
 2 K1 CO4
 18. Define Gibbs phenomenon.
 2 K2 CO4
 19. Define quantization step size.
 2 K1 CO5
- 20. State the methods used to prevent overflow.

 2 K1 CO5
- 21. List different types of Digital Signal Processors specified by Texas Instruments.
- 22. What is pipelining in Digital Signal Processors?

 2 K2 CO6

PART - C (6 × 11 = 66 Marks)

Answer ALL Questions

23. a) Compute the 8 point DFT of the following sequence $x(n)=\{0.5,0.5,0.5,0.5,0.5,0.5,0.0,0.0\}$ II K2 COI using the in place radix-2 DIT FFT algorithm.

OR

- b) Solve the linear convolution of finite duration sequences $h(n)=\{2,1,-1\}$ and $II K3 COI x(n)=\{1,2,3,-1,-2,-3,4,5,6\}$ using Overlap add method and Overlap save method.
- 24. a) Design an analog Butterworth filter that has fp = 10kHz; fs = 25kHz; $\alpha_p = 0.5dB$; $\alpha_s = 11 K2 CO2 = 22dB$.

OR

b) Design an analog Butterworth filter satisfying the constraints,

 $0.9 \le |H(j\Omega| \le 1)$; $0 \le \Omega \le 0.2 \pi$

 $|H(j\Omega| \le 0.2$; $0.4\pi \le \Omega \le \pi$

25. a) Realize the direct form I, direct form II, cascade and Parallel structures of the system 11 K3 CO3 governed by the difference equation,

 $y(n) - \frac{3}{4}y(n-1) + \frac{1}{2}y(n-2) = X(n) + \frac{1}{2}X(n-1)$

b) Use bilinear transformation method to design a digital low-pass Butterworth filter 11 K3 CO3 satisfying the constraints.

 $0.707 \ll \left| H(e^{j\omega}) \right| \ll 1 \; ; 0 \le \omega \le 0.5\pi$ $\left| H(e^{j\omega}) \right| \ll 0.2 \; ; 0.75\pi \le \omega \le \pi$

Assume T=1s.Use suitable structure to realize the filter.

26. a) Design a lowpass filter with a pass band gain of unity, cut-off frequency of 1000Hz ¹¹ ^{K3} ^{CO4} and working at a sampling frequency of 5KHz. The length of the impulse response should be 7. Use a rectangular window technique,

OR

b) Determine the coefficients of a linear phase FIR filter length N=15 which has a 11 K3 CO4 symmetric unit sample response and a frequency response that satisfies the conditions.

 $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & ; k = 0,1,2,3\\ 0.4 & ; k = 4\\ 0 & ; k = 5,6,7 \end{cases}$

27. a) Explain the characteristics of limit cycle oscillation with respect to the system 11 K2 CO5 described by the difference equation y(n) = 0.95y(n-1) + x(n); x(n) = 0 and y(n-1) = 1 3. Estimate the dead range of the system.

OR

11

K3 CO2

- b) Consider the transfer function where $H(z)=H_1(z)H_2(z)$. $H_1(Z)=\frac{1}{(1-0.5z^{-1})}$ and $H_2(Z)=\frac{1}{(1-0.4z^{-1})}$. Estimate the output round of noise power. Assume b=3 (excluding sign bit).
- 28. a) Draw the schematic block diagram of the architecture of TMS320C5X Processor 11 K3 CO6 and explain the major block diagram of the same.

OR

- b) (i) Explain in detail the various addressing modes of Digital signal process. 7 K2 CO6
 - (ii) Write a program to perform16-bit multiplication.

K2 CO6