Reg. No.

Question Paper Code

13508

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Sixth Semester

Electrical and Electronics Engineering 20EEEL608 - INDUSTRIAL DATA COMMUNICATION

Regulations - 2020

D	uration: 3 Hours	Max. Mark	s: 10	0
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$		<i>K</i> –	~~
	Answer ALL Questions	Marks	Level	co
1.	Select the following which is considered a linear code for error detection?	1	K1	CO1
	(a) CRC-16 (b) CRC-CCITT (c) Checksum (d) Cyclic code			
2.	Mention the primary characteristic of a digital signal?	1	K1	CO1
	(a) It has continuous values (b) It has discrete states			
	(c) It only exists in binary form (d)It is always used for encryption			
3.	Choose the main advantage of using the USB interface over traditional serial	1	K1	CO2
	(a) Faster data transfer rates (b) Simpler cable structure			
	(c) Supports longer cable lengths (d) Uses less power			
4.	Which IEEE standard defines the physical layer for wireless local area networks	1	K1	CO2
	(WLAN)?			
	(a) IEEE 802.1 (b) IEEE 802.3 (c) IEEE 802.11 (d) IEEE 802.4			
5.	Tell the maximum transmission distance specified in the original RS-232(C) standard of	of I	<i>K1</i>	CO3
	1968?			
	(a) 25 feet (b) 100 feet (c) 50 feet (d) 9600 feet			
6.	What is a key difference between EIA/TIA 422 and EIA/TIA 423?	1	KI	CO3
	(a) EIA/TIA 422 is unbalanced, while EIA/TIA 423 is balanced			
	(b) EIA/TIA 422 supports higher speeds and multiple receivers, while EIA/TIA 423			
	operates at lower speeds			
	(c) EIA/TIA 423 is used for high-speed Ethernet connections			
7	(d) EIA/TIA 422 requires grounding for proper operation	1	V1	CO4
7.	How do modern bridges improve network performance?	1	ΚI	C <i>04</i>
	(a) By converting Layer 2 addresses into IP addresses			
	(b) By learning Layer 2 addresses and forwarding only necessary traffic.			
	(c) By encrypting all data passing through them			
0	(d) By acting as a hub for all network traffic	1	K1	CO4
8.	Modbus RTU is primarily used for communication between: (a) Field devices only (b) Processors and a host	1	11.1	007
	(c) Web servers and browsers (d) Wireless IoT devices			
9.	Wireless HART is primarily used in:	1	<i>K1</i>	CO5
٦.	(a) Consumer IoT devices (b) Industrial automation and process control			
	(c) Office networks (d) Vehicle-to-vehicle communication.			
10	Linux is an open-source clone of	1	K1	CO5
10.	(a) Windows (b) UNIX (c) Mac OS (d) Android			
	(a) That is (b) That is			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	Define channels, data and bits.	2	K1	CO1
12.	Compare serial and parallel transmission methods.	2	K2	CO1
	Write a short note on the data link layer.	2	K1	CO1
	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	1	3508	8
	7	_		

14.	Out	line the advantages of EIA/TIA 530.	2	K2	CO2					
15.	List out the high-speed serial hard disk interface.			K1	CO2					
16.	Stat	e the difference between EIA 422 and EIA 485.	2	K1	CO2					
17.	Clas	ssify the types of field buses.	2	K2	CO3					
18.	Illus	strate the relationship between OSI and Ethernet/IP.	2	K2	CO3					
19.		te down the different types of Modbus RTU messages.	2	<i>K1</i>	CO4					
	Nan	ne the types of wireless communication technologies used in wireless SCADA systems describe their roles in system operation.	2	K2	CO4					
21.	Inte	rpret the role of IEEE 802.15.4 in low-power wireless communication.	2	<i>K</i> 2	CO5					
22.		at are some of the factors that affect the battery life of sensor nodes in wireless sensor works?	2	KI	CO5					
$PART - C (6 \times 11 = 66 Marks)$										
		Answer ALL Questions								
23.	a)	Compare the OSI model with the TCP/IP model in terms of structure and function. OR	11	K2	CO1					
	b)	With a neat diagram, explain in detail the serial and parallel transmission of data communication.	11	K2	CO1					
24.	a)	Discuss about the EIA/TIA 485(A) standard by identifying its key features and illustrating its communication principles.	11	K2	CO2					
	b)	OR Outline about USB or PC serial communications by identifying their key features and illustrating their operational mechanisms.	11	K2	CO2					
25.	a)	Build the concepts behind Allen-Bradley and Modicon PLC used for industrial systems.	11	К3	CO3					
OR										
	b)	Make use of HART and its concepts and explain with neat diagram.	11	<i>K3</i>	CO3					
26.	a)	Infer the key technologies used in wide area communication, such as cellular networks, satellite communication and LoRaWAN. OR	11	K2	CO4					
	b)	Explain the role of communications security in wide-area SCADA systems.	11	K2	CO4					
27.	a)	Demonstrate in detail about Zigbee module communication reliability and packet loss in noisy environments.	11	K2	CO5					
	1.\	OR	11	K2	CO5					
	b)	With a neat sketch, explain how sensor networks can be used to monitor and manage environmental conditions, such as air quality, water quality, and weather patterns.	11	K2	COS					
28.	a) (i)	Extend some limitations of using wireless SCADA in industrial applications.	6	K2	CO4					
20.		Mention the key hardware components of a wireless sensor network and brief its features.	5	K2	CO5					
		OR								
		Interpret the Important components of Modbus RTU.	6	K2	CO4					
	(ii)	Explain the salient features of Bluetooth.	5	<i>K</i> 2	CO5					