Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13524

B.E. / B.Tech. - DEGREE EXAMINATIONS, APR / MAY 2025

Third Semester

Electrical and Electronics Engineering 20EEPC303 - ELECTROMAGNETIC THEORY

Regulations - 2020

	Regulations - 2020			
Dυ	ration: 3 Hours Ma	x. Mai	rks: 1	.00
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Mauka	<i>K</i> –	co
	Answer ALL Questions	Marks	Level	CO
1.	Which of the following are the Natural sources of electric and magnetic fields?	1	<i>K1</i>	CO1
	(a) The Earth's Magnetic Field (b) Lightning (c) Visible light (d) All of the			
	mentioned			
2.	If F is the force acting on the test charge 'Q' the electric field intensity E would be given	1	<i>K1</i>	CO1
	by			
	(a) $E=F-Q$ (b) $E=FQ$ (c) $E=F/Q$ (d) $E=Q/f$			
3.	Which statement about the electric field in a conductor in electrostatic equilibrium is true?	1	K1	CO2
	(a) The electric field is zero everywhere inside the conductor.			
	(b) The electric field is non-zero everywhere inside the conductor.			
	(c) The electric field is maximum at the center of the conductor.			
	(d) The electric field varies linearly inside the conductor.			
4	How does dielectric strength relate to an insulating material?	1	<i>K1</i>	CO2
	(a) It is the ability to conduct electric current.			
	(b) It is the maximum electric field an insulating material can withstand without breaking			
	down.			
	(c) It is the resistance offered by the material to the electric flow.			
_	(d) It measures the material's capacitive nature.	1	V1	CO2
5.	What does the Lorentz force law describe?	1	K1	CO3
	(a) The force on a magnetic field due to a current.			
	(b) The force on a charged particle due to electric and magnetic fields.			
	(c) The force between two magnetic poles.			
_	(d) The resistance in a magnetic circuit.	1	K1	CO3
6.	What does the term 'inductance' refer to?	1	ΚI	003
	(a) The ability of a conductor to resist changes in voltage. (b) The ability of a conductor to resist changes in current			
	(b) The ability of a conductor to resist changes in current.(c) The capacity of a capacitor to store charge.			
	(d) The resistance of a conductor to electric flow.			
7.	What is motional EMF?	1	K1	CO4
٠.	(a) EMF generated due to the motion of a conductor in a magnetic field.			
	(b) EMF generated due to motion of charges in a circuit.			
	(c) EMF induced in a stationary conductor.			
	(d) A constant voltage source in a circuit.			
8.	What role does the displacement current play in Maxwell's equations?	1	<i>K1</i>	CO4
•	(a) It helps equate the continuity equation for changing electric fields.			
	(b) It negates the need for magnetic fields.			
	(c) It provides a basis for resistive circuits.			
	(d) It reduces the total current in a circuit.			

9.	(a) The rate at which the wave's amplitude increases.(b) The rate at which the wave's amplitude decreases.(c) The phase shift per unit length.								
10.	(d)Th What permi	1	K1	CO5					
	-	increases (b) It decreases (c) It remains constant (d) It becomes zero $PART - B (12 \times 2 = 24 Marks)$							
		Answer ALL Questions							
11.	State	Stoke's theorem and its application.	2	K1	CO1				
12.	State the coulomb's law.								
13.	List o	ut Applications of Gauss Law.	2	K1	CO1				
14.	Defin	e polarization.	2	K1	CO2				
15.	Write	the equation for capacitance of coaxial cable with solid inner conductor.	2	K1	CO2				
16.	Comp	pare I_C and I_{D_c}	2	<i>K</i> 2	CO2				
17.	State	Ampere's circuital law.	2	K1	CO3				
18.	Distin	guish between magnetic scalar potential and magnetic vector potential.	2	<i>K</i> 2	CO3				
19.	Defin	e coupling coefficient.	2	K1	CO4				
20.	Distin	guish between transformer emf and motional emf.	2	<i>K</i> 2	CO4				
21.	Defin	e surface impedance.	2	<i>K1</i>	CO5				
22.	State	Slepian vector.	2	<i>K1</i>	CO5				
		$PART - C (6 \times 11 = 66 Marks)$							
		Answer ALL Questions							
23.	a)	State and derive the divergence theorem.	11	<i>K</i> 2	CO1				
		OR							
	b)	By means of gauss's law, determine the electric field intensity inside and outside a spherical shell of radius R that contains a total charge Q uniformly distributed over the surface.	11	K2	CO1				
24.	a)	At an interface separating dielectric medium $1(\epsilon r_1)$ and dielectric medium $2(\epsilon r_2)$, Apply Boundary Conditions and show that the tangential component of E is continuous across the boundary, whereas the normal component of D is discontinuous at the boundary.	11	К3	CO2				
		OR			~~*				
	b)	Drive an expression for energy stored and energy density in electrostatic field.	11	<i>K3</i>	CO2				
25.	a)	Obtain an expression for the magnetic flux density and field intensity due to finite long current carrying conductor using Biot Savart's law. OR	11	К3	CO3				
	b)	Derive an expression for the inductance per meter length of two transmission lines.	11	K3	CO3				
26	a)	Derive and explain the Maxwell's equations in point form and integral form using Ampere's circuital law and Faraday's law.	11	К3	CO4				
	b)	OR Derive the expression for relationship of circuit theory and field theory series RLC circuit.	11	К3	CO4				
27.	a)	State and prove poynting theorem and poynting vector. OR	11	K2	CO5				
	b)		11	K2	CO5				

28.	a) (i)	Compare the field theory and circuit theory.	6	<i>K</i> 2	CO
	(ii)	Define depth of penetration. Derive its expression.	5	<i>K</i> 2	CO.
		OR			
	b) (i)	Compare the energy stored in inductor and capacitor.	6	<i>K</i> 2	CO
	(ii)	Define Brewster angle and derive its expression.	5	<i>K</i> 2	CO.