Reg. No.								
Reg. 140.								

Question Paper Code

13651

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth Semester

Electrical and Electronics Engineering 20EEPC401 - SYNCHRONOUS AND INDUCTION MACHINES

Regulations - 2020

	Duration: 3 Hours Max	x. Marks: 1	00					
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$	14 1	<i>K</i> –	CO				
	Answer ALL Questions		Marks	Level	CO			
1.	Which method is also known as the ampere turn method for calculating	ng voltage	1	<i>K1</i>	CO1			
	regulation?							
	(a) Equivalent circuit method (b) Synchronous impedance	method						
	(c) MMF Method (d) Direct method							
2.	The method used to determine (X _d) and (X _q), the direct and quadrature axis r	eactance is	; <i>1</i>	K1	CO1			
	called							
	(a) Reactance test (b) Blondel's two reactions	n theory						
	(c) Slip test (d) All of the mentioned							
3.	The damping winding in a synchronous motor is generally used		1	<i>K1</i>	CO2			
	(a) To provide starting torque only (b) To reduce noise level							
	(c) To reduce eddy currents (d) To prevent hunting and provide the start	ing torque						
4.	Synchronous capacitor is		1	<i>K1</i>	CO2			
	(a) An ordinary static capacitor bank							
	b) An over excited synchronous motor driving mechanical load							
	(c) An over excited synchronous motor running without mechanical load							
_	(d) None of the mentioned			77.1	g 0.2			
5.	The rotor winding for a 3-phase slip-ring induction motor having delta-conne	ected stator	: 1	K1	CO3			
	must be connected in							
	(a) delta (b) star							
	(c) delta or star according to need (d) none of the mentioned		1	V1	CO3			
6.	In the squirrel-cage induction motor the rotor slots are usually given slight skew		1	K1	COS			
	(a) To reduce the magnetic hum and locking tendency of the rotor							
	(b) To increase the tensile strength of the rotor bars							
	(c) To ensure easy fabrication							
7	(d) None of the mentioned	hart mana at	1	K1	CO4			
7.	7. An induction motor when started on load does not accelerate up to full speed but runs at							
	1/7th of the rated speed. The motor is said to be (a) locking (b) plugging (c) crawling (d) coggi	na						
8.	The speed of a slip-ring three phase induction motor can be controlled from the	•	. 1	<i>K1</i>	CO4			
0.	by	5 TOTOL SIGE	, -					
	(a) changing the supply voltage (b) changing the supply frequen	CV						
	(c) rheostatic control (d) changing the supply frequent	•						
9.	In a shaded pole motor the phase splitting is achieved by placing a shading coi		1	K1	CO5			
<i>)</i> .	cut around the	at the stot	,					
	(a) larger part of the pole (b) smaller part of the pole							
	(c) both the parts of the pole (d) any of the mentioned							
10.	Single phase induction motors are made self starting by		1	K1	CO5			
	(a) increasing rotor resistance							
	(b) using an external starting device							
	(c) providing an additional winding on the stator called the auxiliary winding							
	(d) any of the mentioned methods.							
K1 -	K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create							
	7							

PART - B $(12 \times 2 = 24 \text{ Marks})$

Answer ALL Questions

		Answer ALL Questions					
11.	Defin	e the term voltage regulation of alternator.	2	K1	CO1		
12.	Infer the conditions for parallel operation of alternators. Infer why is the synchronous impedance method of estimating voltage regulation is						
13.	Infer why is the synchronous impedance method of estimating voltage regulation is considered as pessimistic method? Why 3 phase synchronous motor will always run at synchronous speed?						
14.	Why 3-phase synchronous motor will always run at synchronous speed?						
15.	Infer	why synchronous motors are not self starting.	2	<i>K</i> 2	CO2		
16.	List o	ut the applications of synchronous condenser.	2	Kl	CO2		
17.	Write	an expression for the slip of an induction motor.	2	K1	CO3		
18.	Expla speed	in why the rotor speed of an induction motor always less than the synchronous .	2	K2	CO3		
19.	List o	ut the methods of speed control of cage type 3-phase induction motor.	2	K1	CO4		
20.	While	e controlling induction motor speed, how super-synchronous speed is achieved?	2	<i>K</i> 2	CO4		
21.	State	the advantage of capacitor-run over capacitor-start motor.	2	Kl	CO5		
22.	List o	ut the starting methods for single phase induction motor.	2	K1	CO5		
22	۵)	PART - C (6 × 11 = 66 Marks) Answer ALL Questions Enumerote clearly the Potier Method of determining the regulation of an elternator	11	<i>K3</i>	CO1		
23.	a)	Enumerate clearly the Potier Method of determining the regulation of an alternator. OR	11	K3	COI		
	1- \		11	К3	CO1		
	b)	A three phase 50 Hz star connected, 2000KVA,2300V alternator gives a short circuit current of 540A for a certain field excitation. With the same excitation, the open circuit voltage is 870V. The resistance between a pair of terminals is 0.14 Ω . Find Full load voltage regulation at (i) U.P.F (ii) 0.8 p.f. lagging (iii) 0.9 p.f. leading.	11	KJ	COI		
24.	a)	Explain V and inverted V curves of a synchronous motor with necessary diagram.	11	K2	CO2		
		OR					
	b)	Derive the expression for maximum power developed by a synchronous motor.	11	K2	CO2		
25.	a)	Illustrate Torque – Slip characteristics of the 3 phase induction motor. OR	11	<i>K3</i>	CO3		
	b)	An 18.65 KW, 4 pole, 50Hz, 3 phase induction motor has friction and windage losses of 2.5 percent of the output. Full load slip is 4%. Find the full load (i) Rotor copper loss (ii) rotor input (iii) Shaft Torque (iv) The Gross electromagnetic torque.	11	K3	CO3		
26.	a)	Describe in detail the methods of slip power recovery scheme of three phase induction motor with its advantages and disadvantages. OR	11	K2	CO4		
	b)	Explain with neat sketches, the working of star-delta starter and rotor resistance starter.	11	K2	CO4		
27.	a)	Explain the construction and principle of operation of shaded pole induction motor. OR	11	K2	CO5		
	b)	Draw the equivalent circuit of single-phase induction motor and discuss the experimental procedure to obtain its parameter.	11	K2	CO5		
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		13651					
		2					

28.	a) (i)	Explain with neat sketch, the working of auto transformer starter.	6	K2	CO4			
	(ii)	Explain the no load test and blocked rotor test on a single-phase induction motor.	5	K2	COS			
OR								
	b) (i)	Explain the cascade operation of induction motors to obtain variable speed.	6	K2	CO ₄			
	(ii)	Write short notes on double field revolving theory.	5	K2	COS			