Reg. No.								

B.E. / **B.Tech.** - **DEGREE EXAMINATIONS, APRIL** / **MAY 2025**

Seventh Semester

Electrical and Electronics Engineering 20EEPC702 - ELECTRIC VEHICLES

Regulations - 2020

Dυ	Max. Marks: 100			
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$		<i>K</i> –	~~
	Answer ALL Questions	Marks	Level	co
1.	What is the approximate charging time for a fast-charging station to charge an electric	1	<i>K1</i>	CO1
	vehicle to 80% capacity?			
	(a) 5 minutes (b) 30 minutes (c) 1 hour (d) 8 hours			
2.	Which type of electric vehicle has both an electric motor and an internal combustion	1	<i>K1</i>	CO1
	engine?			
	(a) Battery Electric Vehicle (BEV) (b) Hybrid Electric Vehicle (HEV)			
2	(c) Plug-in Hybrid Electric Vehicle (PHEV) (d) Fuel Cell Electric Vehicle (FCEV)	1	<i>K1</i>	CO2
3.	What will be the C-rate of a battery with capacity of 15 kWh if it discharges power at 30	1	K1	CO2
	kW in 30 min?			
4.	(a) 0.1C (b) 0.2 C (c) 0.4C (d) 0.3C Super capacitors in electric vehicles are primarily used for	1	<i>K1</i>	CO2
4.	(a) Energy storage (b) Power delivery	•	111	002
	(a) Energy storage (b) Fower delivery (c) Both energy storage and power delivery (d) Temperature regulation			
5.	Which of the following is a key consideration when choosing an electric vehicle (EV)?	1	<i>K1</i>	CO3
٥.	(a) Battery range (b) Engine size (c)Fuel efficiency (d) Transmission type			
6.	Which control method allows for precise control of the motor's speed and torque?	1	<i>K1</i>	CO3
	(a) Closed-loop control (b) Open-loop control			
	(c) Feedback control (d) On-off control			
7.	In a series hybrid, how do control strategies interact with the power rating of the	1	<i>K1</i>	CO4
	engine/generator?			
	(a) Control strategies have no impact on the engine/generator's power rating.			
	(b) Control strategies can adjust the engine/generator's power output as needed.			
	(c) Control strategies determine the vehicle's color based on engine power.			
0	(d) The power rating of the engine/generator determines control strategy.	1	K1	CO4
8.	How does the power rating of the engine/generator impact the range of a series hybrid	1	ΚI	CO4
	vehicle? (a) A higher power-rated engine/generator increases the range.			
	(a) A higher power-rated engine/generator increases the range. (b) The power rating has no effect on the vehicle's range.			
	(c) A lower power-rated engine/generator extends the range.			
	(d) It determines the tire pressure.			
9.	What is the significance of soft-switching techniques in the operation of a Z-Converter?	1	<i>K1</i>	CO5
	(a) Soft-switching techniques eliminate the need for a transformer.			
	(b) They reduce voltage stress on components but increase switching losses.			
	(c) Soft-switching techniques minimize switching losses and improve overall efficiency.			
	(d) They increase the complexity of the control			
10.	In an isolated bidirectional DC-DC converter, what role does the transformer play, and	1	K1	CO5
	why is it necessary?			
	(a) The transformer stores energy for bidirectional power flow.			
	(b) The transformer provides electrical isolation between input and output.			
	(c) The transformer regulates the voltage output.			
	(d) The transformer reduces the switching frequency			

PART - B $(12 \times 2 = 24 \text{ Marks})$

Answer ALL Questions

		Answer ALL Questions					
11.	Define	Hybridization ratio.	2	<i>K1</i>	CO1		
12.	Why d	2	K1	CO1			
13.	Mentio	Mention three disadvantages in electric cars.					
14.	What a	are the common problems associated with lead acid batteries?	2	K1	CO2		
15.	Define specific energy of the battery.				CO2		
16.	Mentio	on limitations of fuel cells.	2	<i>K1</i>	CO2		
17.	17. Summarize the advantages of PMBLDC motors.				CO3		
18.	č				CO3		
19.	depends? 19. Show the difference between hybrid and plug-in hybrid.				CO4		
20.					CO4		
21.	· · · · · · · · · · · · · · · · · · ·				CO5		
22.	Outlin	2	K2	CO5			
		PART - C ($6 \times 11 = 66$ Marks) Answer ALL Questions					
23.	a)	Explain the major components of an electric vehicle with the help of a block diagram.	11	K2	CO1		
	1.	OR	11	K2	CO1		
	b)	Elucidate the different configurations of drive trains in electric vehicles.	11	K2	COI		
24.	a)	Enlighten the working principle of a fuel-cell and its analysis. OR	11	K2	CO2		
	b)	Illustrate and infer the details about PEM fuel cell.	11	K2	CO2		
25.	a)	Outline the structure of the controller for the PMBLDC motor and explain the functions of various blocks.	11	K2	CO3		
	b)	OR Explicate the microprocessor based control of the switched reluctance motor with a neat block diagram.	11	K2	СОЗ		
26.	a)	Explain architecture and power flow control of parallel HEV.	11	K2	CO4		
		OR					
	b)	Demonstrate the extended configuration of a series hybrid electric drive train with six modes of operation.	11	K2	CO4		
27.	a)	Summarize the two control strategies of Z converter topology. OR	11	K2	CO5		
	b)	Explain the operation of transformer-less charger topology used in EV charging.	11	K2	CO5		
28.	a) (i)	Outline the flowchart of control strategy of series Hybrid drive train.	6	K2	CO4		
	(ii)	Outline any one type of battery charging method. OR	5	K2	CO5		
	b) (i)	Illustrate the difference between series and parallel hybrid.	6	K2	CO4		
	(ii)	Demonstrate the operating principles of a full-bridge isolated bi-directional DC-DC converter.	5	K2	CO5		