Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13401

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Eight Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20EIEL803 - VLSI DESIGN

Regulations - 2020

Dι	uration: 3 Hours	ıx. Ma	ks: 1	00
	16.1	<i>K</i> –	GO.	
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$ Answer ALL Questions	Mark	K – Level	CO
1.	Parasitic capacitances are also called	1	<i>K1</i>	CO1
	(a) Depletion capacitance (b) Diffusion capacitance			
	(c) Gate capacitance (d) Average Capacitance			
2.	Find the value of velocity if the voltage difference between drain and source is V_{ds} =4.3v,	1	K2	CO1
	mobility for electrons in nMOS transistor is 510 cm ² /V and the channel length is 5cm.			
	(a) 500units (b) 225 units (c) 438.6units (d) 200 units			
3.	CMOS domino logic occupies	1	<i>K1</i>	CO2
	(a) smaller area (b) larger area			
	(c) Both smaller and larger area (d) None of the mentioned			
4.	Dynamic power depends on	1	<i>K1</i>	CO2
	(a) Sum of the effective capacitances of all the nodes			
	(b) Sum of the gate capacitances of all the nodes			
	(c) Sum of the diffusion capacitances of all the nodes			
	(d) Sum of the wire capacitances of all the nodes			
5.	Race conditions can be avoided by keeping transparent period	1	K2	CO3
	(a) long (b) zero (c) maximum (d) short			
6.	Sense amplifier generally employs	1	K1	CO3
	(a) negative feedback (b) positive feedback (c) neutral feedback (d) no feedback			
7.	The carry chain in adder is consist with	1	<i>K1</i>	CO4
	(a) cross-bar swith (b) transmission gate (c) bus interconnection (d) pass transistor			
8.	The delay of ripple carry adder is linearly proportional to	1	<i>K</i> 2	CO4
	(a) N (b) 2N (c) 2 (d) 8			
9.	Self-checking technique consists of	1	KI	CO5
	(a) supplying coded input data (b) receiving coded output data			
	(c) supplying all possible input sequence (d) all of the mentioned	,	***	go.5
10.	The of FPGA consists of a 2-dimensional array of configurable logic blocks (CLBs)	1	K1	CO5
	(a) Programmable logic structure (b) Programmable routing structure			
	(c) Programmable Input/Output (I/O) (d) All of the mentioned			
	DADT D (12 v 2 - 24 Mowks)			
	PART - B $(12 \times 2 = 24 \text{ Marks})$ Answer ALL Questions			
11	Outline the Lambda design rule.	2	<i>K</i> 2	CO1
	•	2	<i>K</i> 2	CO1
	Compare constant field scaling and constant voltage scaling.	2	<i>K</i> 2	CO1
	List the advantages of pass transistor.	2	<i>K1</i>	CO2
15.	Show a pseudo NMOS inverter.	2	<i>K</i> 2	CO2
	Identify the applications of transmission gate.	2	<i>K3</i>	CO2
	Illustrate the circuit for generation two phase non overlapping clock.	2	<i>K</i> 2	CO3
	Explain about pipelined operation.	2	K2	CO3
	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		134	01

19. 20. 21. 22.	1. Compare the differences between standard IC and custom IC.						
PART - C ($6 \times 11 = 66 \text{ Marks}$) Answer ALL Questions							
23.	a)	Explain the equation for source to drain current in the three regions of MOS transistor.	11	K2	CO1		
	b)	OR Summarize about the CV characteristics of MOS transistor along with neat sketches.	11	K2	CO1		
24.	a)	Develop the Dual Rail Domino Logic families with necessary diagrams. OR	11	К3	CO2		
	b)	Apply the following power dissipation techniques and its impact in CMOS inverter circuits.	11	К3	CO2		
		(i) Static dissipation.(ii) Dynamic dissipation.					
25.	a)	Explain the various sources of clock skew and jitter with necessary diagrams. OR	11	K2	CO3		
	b)	Summarize about Multiplexer-Based Latches with neat diagram.	11	K2	CO3		
26.	a)	Construct the Manchester carry chain adder with a neat diagram and supporting equations.	11	К3	CO4		
	b)	OR Divid a heath multiplier with passessery discrepase and calculations	11	К3	CO4		
	٥,	Build a booth multiplier with necessary diagrams and calculations.					
27.	a)	Explain the ASIC design flow with a neat diagram. OR	11	K2	CO5		
	b)	Summarize about the Boundary Scan in detail with supporting diagrams.	11	K2	CO5		
28.	a) (i)	Build a Wallace tree multiplier and explain its working with neat diagrams.	6	<i>K3</i>	CO4		
	(ii)	Illustrate Configurable Logic Blocks with neat diagrams. OR	5	K2	CO5		
b) (i) Construct a Carry Bypass adders and identify its delay equations. 6 K3 C							
		Illustrate Input output Block with neat diagrams.	5	K2	CO5		