Question Paper Code

13676

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

Electronics and Instrumentation Engineering 20EIPC301 - ELECTRICAL AND ELECTRONIC MEASUREMENTS

Regulations - 2020

Ι	Ouration: 3 Hours	lax. Mar	ks: 1	.00					
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Mauka	<i>K</i> –	CO					
	Answer ALL Questions	Marks	Level	co					
1	. Which of the following is the most popular method for measuring low resistance?	1	<i>K1</i>	CO1					
	(a) Potentiometer method (b) ammeter-voltmeter method								
	(c) Kelvin double bridge method (d) Ducter ohmmeter method.								
2		1	<i>K1</i>	CO1					
	(a) Measuring high resistance (b) Measuring low resistance								
	(c) Measuring inductance (d) Measuring capacitance.								
3	· · · · · · · · · · · · · · · · · · ·	1	<i>K1</i>	CO2					
	(a) Thermal noise (b) Stray capacitance								
	(c) Frequency variation (d) Temperature changes affecting coil resistances		***	G 0.2					
4		1	K1	CO2					
	(a) They require manual meter readings								
	(b) They provide real time energy consumption data								
	(c) They are less accurate in measuring energy usage								
_	(d) They are more expensive to install.	1	K1	CO3					
5		1	KI	003					
	(a) Thick conductors and small length of turns(b) Thin conductors and small length of turns								
	(c) Thin conductors and large length of turns								
	(d) Thick conductors and large length of turns.								
6		\mathbf{C} 1	K1	CO3					
potentiometer?									
	(a) Measurement of current (b) Measurement of resistance								
	(c) Measurement of voltage (d) Measurement of core loss.								
7		1	<i>K1</i>	CO4					
	(a) D/A converter (b) Oscillator (c) Amplifier (d) A/D converter								
8	. What is the primary function of a wave analyzer?	1	<i>K1</i>	CO4					
	(a) Measure the voltage of a signal (b) Measure the frequency of a signal	l							
	(c) Analyze the harmonic components of a signal (d) Generate a sine wave.								
9		1	KI	CO5					
	(a) Television (b) Calculators (c) Computer monitors (d) Mobile phones		1/1	005					
1(O. Which type of memory is generally used in data loggers for data storage?	1	<i>K1</i>	CO5					
	(a)RAM (b) ROM (c) Flash memory (d) Magnetic Disks.								
	$PART - B (12 \times 2 = 24 Marks)$								
	Answer ALL Questions								
11	Doubtain the expression for unknown resistance in Wheatstone bridge.	2	K2	CO1					
	2. What are the sources of errors in ac bridge measurements?	2	K1	CO1					
	3. Why PMMC meters are not suitable for AC measurement?	2	K2	CO1					
		2		CO2					
14	4. Define Phantom loading.	2	11.1	002					

15.	Differ wattm	entiate between current coil and pressure coil of electrodynamometer type eter.	2	K2	CO2	
16.	What	are the advantages of smart energy meters?	2	<i>K</i> 2	CO2	
17.	Define	e the term standardization in potentiometer.	2	<i>K1</i>	CO3	
18.	Indica	te the functions of instrument transformers.	2	<i>K1</i>	CO3	
19.	List th	ne methods available for frequency measurements.	2	<i>K1</i>	CO4	
20.	Define	e Q meters.	2	<i>K1</i>	CO4	
21.	List o	ut the advantages of LED.	2	<i>K</i> 2	CO5	
22.	Menti	on the functions of a data logger.	2	K2	CO5	
23.	a)	PART - C ($6 \times 11 = 66$ Marks) Answer ALL Questions Describe with neat diagram the construction and working of attraction and repulsion type Moving Iron Instruments.	11	K2	CO1	
	L)	OR	11	K2	CO1	
	b)	Explain how a Maxwell bridge can be used for measuring an unknown inductance.	11	K2	COI	
24.	a)	Explain the construction and working of single phase induction type energy meter. OR	11	K2	CO2	
	b)	Discuss the Errors Caused and Remedies of Electrodynamometer type wattmeter.	11	K2	CO2	
25.	a)	Draw the circuit diagram of Crompton's potentiometer and explain its working. Describe the steps used when measuring an unknown resistance. OR	11	K2	CO3	
	b)	Explain the working principle of Current transformer with neat diagram and draw the phasor diagram.	11	K2	CO3	
26.	a)	Explain the working of successive approximation type DVM in detail.	11	<i>K</i> 2	CO4	
		OR				
	b)	Explain with neat diagram about Microprocessor based DMM with auto ranging and self diagnostic features.	11	K2	CO4	
27.	a)	Explain about XY recorders with neat diagram. OR	11	K2	CO5	
	b)	Draw the block diagram of Cathode ray oscilloscope and explain function of each block in detail.	11	K2	CO5	
28.	a) (i)	Explain the working of the function generator.	6	K2	CO4	
		Compare LCD display with LED displays.	5	K2	CO5	
OR						
	b) (i)	Explain the working principle of LCR meters.	6	K2	CO4	
		Explain about IOT Enabled recorders in detail.	5	K2	CO5	