Reg. No.

Question Paper Code

13462

B.E. / B.Tech. - DEGREE EXAMINATIONS, APR / MAY 2025

Third Semester

Electronics and Instrumentation Engineering 20EIPC302 - SENSORS AND TRANSDUCERS

Regulations - 2020

	regulations 2020									
Duration: 3 Hours Max.										
$PART - A (MCQ) (10 \times 1 = 10 Marks)$										
	Answer ALL Questions	Marks	Level	co						
1.	Two equal resistances each of $100\Omega\pm1\%$ (standard deviation) are connected in parallel.	. 1	<i>K3</i>	CO1						
The standard deviation of combination will be										
	(a) 0.5% (b) 12% (c) 2% (d) 2									
2.	The limiting errors of measurements of power consumed by and the current passing through a resistance are $\pm 1.5\%$ and $\pm 1\%$ respectively. The limiting error for measurements of power consumed by and the current passing	1	<i>K3</i>	CO1						
	ent									
	of resistance will be then									
_	(a) $\pm 0.5\%$ (b) $\pm 1.0\%$ (c) $\pm 2.5\%$ (d) $\pm 3.5\%$		***	G02						
3.	The time taken by the output to fall from 90% to 10% of the final value is called	1	K2	CO2						
4	(a) Rise time (b) delay time (c) storage time (d) Fall time	1	<i>K</i> 2	CO2						
4.	The voltage output of the thermocouple is		KΖ	CO2						
	(a) Directly proportional to the addition of temperature of hot junction and cold junction (b) Inversely proportional to the difference in temperature of hot junction and cold									
	junction (a) Directly proportional to the difference of temperature of het junction and cald junction	ion								
(c) Directly proportional to the difference of temperature of hot junction and cold junction (d) Inversely proportional to the addition in temperature of hot junction and cold junction										
5.	What does a decrease in electrical resistance signify in the functioning of a strain gauge		K2	CO3						
٥.	(a) The object is under compression (b) The object is being stretched	· ·								
	(c) The object is and estimated the object is experiencing no stress (d) The object is experiencing no stress									
6.	Which of the following should be incorporated in the RTD to make a temperature sensitive sensiti	ing 1	<i>K</i> 2	CO3						
	bridge most sensitive to temperature?	8								
	(a) Platinum (b) Nickel (c) Thermistor (d) Copper									
7.	Composite capacitance consists of	1	K2	CO4						
	(c) Two dielectric media (d) Three dielectric media									
8.	Frequency response of capacitive transducers is	1	K2	CO4						
	(a) High (b) medium (c) Low (d) zero	7	1//2	005						
9.	Quartz and Rochelle salt belong to	1	<i>K</i> 2	CO5						
	(a) natural group of piezoelectric materials									
	(b) synthetic group of piezoelectric materials									
	(c) natural or synthetic group of piezoelectric materials provided they are properly									
	polarized (d) none of the mentioned									
10	Sensor is an integral element in the internet of things (IoT).	1	<i>K</i> 2	CO5						
10.	(a) Smart Sensor (b) LASER Sensor (c) Nano Sensor (d) Acoustic Sensor									
	(0) 2.12211 2011001 (0) 1.100 2011001									
$PART - B (12 \times 2 = 24 Marks)$										
Answer ALL Questions										
11.	Define Passive Transducer.	2	<i>K1</i>	CO1						
12.	List the factors responsible for selection of a transducer.	2	<i>K1</i>	CO1						
	-									

13.	Define	e Instrumental error.	2	<i>K1</i>	CO1
14.	List the test inputs of the transducer.			K1	CO2
15.	Comp	are accuracy and precision.	2	K2	CO2
16.	Define	e linearity.	2	K1	CO2
17.	Why c	lynamic compensation required for a hot wire anemometer?	2	<i>K1</i>	CO3
18.	Menti	on the different approximation methods of resistance thermometers.	2	<i>K1</i>	CO3
19.	Comp	are capacitive and inductive transducers.	2	K2	CO4
20.	Menti	on the need of a demodulator in a Variable Reluctance Accelerometer.	2	<i>K1</i>	CO4
21.	Identi	fy the important features of smart transducer.	2	K2	CO5
22.	List th	e advantages of MEMS.	2	<i>K1</i>	CO5
		$PART - C (6 \times 11 = 66 Marks)$			
23.	a)	Answer ALL Questions Design a measurement system using appropriate functional blocks to determine the temperature of a flowing liquid in a pipe and draw a block diagrams. OR	11	К3	CO1
	b)	The following values were obtained from the measurement of current: 12.35 A, 12.71 A, 12.48 A, 10.24 A, 12.63 A and 12.58 A. Calculate: 1. The arithmetic mean 2. The average deviation 3.The standard deviation.	11	К3	CO1
24.	a)	Obtain the ramp response of a first order instrument.	11	K2	CO2
27.	u)	OR			
	b)	Discuss about the static characteristics.	11	K2	CO2
	0)	Discuss about the state characteristics.			
25.	a)	With a neat diagram explain the principle and construction details of linear and circular potentiometer.	11	K2	СОЗ
		OR			
	b)	Explain the construction and working of a hot wire anemometer with a neat diagram. Also give its advantages and disadvantages.	11	K2	CO3
26.	a)	Explain the construction and working principle of Synchros and Microsyn with neat diagram.	11	K2	CO4
		OR			
	b)	Discuss the frequency response of capacitive transducers.	11	K2	CO4
27.	a)	Describe the working of smart sensor with a neat block diagram. OR	11	K2	CO5
	b)	Explain about the environmental Monitoring sensors in Water Quality & Air pollution in detail.	11	K2	CO5
28.	a) (i)	Describe the principle of operation of variable reluctance transducer.	6	K2	CO4
		Explain the working principle of Film Sensor in detail.	5	K2	CO5
		OR			
	b) (i)	Describe the construction and working of a capacitor microphone.	6	K2	CO4
		Explain the working principle of Nano Sensor in detail.	5	K2	CO5