Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13525

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

Electrical and Instrumentation Engineering

20EIPC303 - ANALOG ELECTRONIC CIRCUITS

Regulations - 2020

Duration: 3 Hours					00
PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$				<i>K</i> –	~~
	•	LL Questions	Marks	Level	co
1.	In a Common Emitter (CE) configuration of	a BJT, the output is taken across which	1	<i>K1</i>	CO1
	terminals?				
	(a) Base and Emitter (b) Co	ollector and Base			
	(c) Collector and Emitter (d) Ba	se and Collector			
2.	What is the main function of a UJT (Unijunction	on Transistor)?	1	<i>K1</i>	CO1
	(a) High-frequency amplification (b) Vo	oltage regulation			
	(c) Oscillation and triggering (d) Po	wer switching			
3.	Which of the following FET amplifier configu	rations offers high input impedance and is	1	<i>K1</i>	CO2
	typically used as a buffer?				
		ommon Source (CS)			
		fferential			
4.	Which of the following is a major drawback of	f Class B amplifiers that Class AB aims to	1	K1	CO2
	reduce?				
		ligh power dissipation			
	* *	arge size	_		
5.	What is one major advantage of using negative		1	<i>K1</i>	CO3
	(a) Reduces input impedance	(b) Increases distortion			
_	(c) Improves gain stability and reduces noise		,	77.1	go.
6.	Which of the following is a necessary condition	n for oscillation in a feedback circuit?	1	<i>K1</i>	CO3
	(a) Feedback factor must be zero				
	(b) The loop gain must be less than one	1000			
	(c) The total phase shift around the loop must be				
-	(d) Loop gain must be unity and total phase shi		1	V1	CO1
7.	Which of the following is a key characteristic of		1	K1	CO4
		e bandwidth and infinite open-loop gain			
0		ommon-mode rejection ratio	1	K1	CO4
8.	The purpose of a sample and hold (S/H) circuit	using an op-amp is to:	1	ΚI	CO4
	(a) Differentiate the input signal				
	(b) Filter high-frequency noise	ampling intervals			
	(c) Maintain a constant output voltage during s(d) Generate square waves	amping intervals			
9.	Which IC is commonly used for generating sin	a squara and triangular wayaforms over a	1	K1	CO5
7.	wide frequency range?	e, square, and triangular waverorms over a	-		000
	(a) IC741 (b) IC55	55			
	(a) IC741 (b) IC53 (c) IC8038 (d) LM3				
10	In a stable mode, the 555 timer generates:	<i>,</i> 1 /	1	<i>K</i> 2	CO5
10.		ontinuous square wave	-	-	
		mp signal			
	(d) II all	mp organi			

PART - B $(12 \times 2 = 24 \text{ Marks})$

Answer ALL Questions

		Answer ALL Questions					
1.	1. Wh	at is the purpose of biasing in BJT amplifiers?	2	K1	CO1		
12	2. Wh	What is the function of the base region in a BJT transistor?					
13	3. Wh	What is the significance of diffusion and transition capacitance in a PN junction diode?					
14	4. Wh	. What is meant by crossover distortion in Class B power amplifiers?					
15	5. Stat	2	K2	CO2			
16	5. Wh	at is the role of source resistance in a common drain (CD) amplifier?	2	<i>K1</i>	CO2		
17	7. Stat	e the basic principle behind the working of a Wien Bridge Oscillator.	2	<i>K1</i>	CO3		
18	8. Diff	ferentiate between voltage-series and current-shunt feedback topologies.	2	K2	CO3		
19	9. List	the applications of instrumentation amplifier.	2	<i>K1</i>	CO4		
20). Wh	at is the need for clipper and clamper circuits?	2	K2	CO4		
2	1. Diff	Ferentiate between a stable and monostable mode of operation.	2	K2	CO5		
22	2. List	few applications of LM317.	2	K1	CO5		
		PART - C $(6 \times 11 = 66 \text{ Marks})$					
		Answer ALL Questions					
23	3. a)	Draw the structure of a PN junction diode and explain its V-I characteristics under	11	K2	CO1		
		forward and reverse bias conditions. OR					
	b)	Discuss the different types of biasing techniques used in BJT amplifiers. Explain the	11	K2	CO1		
	U)	need for stabilization and thermal runaway prevention.					
24	4. a)	With a neat diagram explain the construction and working of JFET and MOSFET.	11	K2	CO2		
		OR					
	b)	Explain the operation and characteristics of a Class B push-pull amplifier. How can	11	K2	CO2		
		a crossover distortion be minimized.					
24		With most circuit discourse and in the constant in and another minimals of a minimals	11	K2	CO3		
25	5. a)	With neat circuit diagram explain the construction and working principle of a phase shift oscillator.	11	KZ	003		
		OR					
	b)	Explain the different types of feedback configurations with suitable diagrams. State	11	K2	CO3		
	,	the advantages of negative feedback in amplifiers.					
26	6. a)		11	K2	CO4		
		show how input waveforms are modified by these circuits. OR					
	b)	Explain the working of an instrumentation amplifier using op-amps. List its	11	K2	CO4		
	0)	advantages and applications in measurement systems.					
27	7. a)	Draw and explain the functional block diagram of a 555 timer IC. Describe how it	11	K2	CO5		
		operates in a stable mode with a suitable timing diagram and waveform.					
		OR		***	g 0.5		
	b)	Explain the function and operation of the IC8038 function generator. Illustrate the	11	K2	CO5		
		waveform outputs and the internal block diagram to support your explanation.					
28	8. a)i)	Explain the working principle of op-amp based monostable multivibrator.	6	K2	CO4		
_`		Describe the internal block diagram and working of the LM317 adjustable voltage	5	K2	CO5		
	11)	regulator.					
K	1 – Rem	ember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		135	525		
		$\boldsymbol{\gamma}$					

OR

- b) i) Explain the operation of an op-amp based differentiator circuit. CO4*K*2 5 *K*2 CO5
 - ii) Explain the operation of the IC723 voltage regulator.