Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13471

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20EIPC401 - ELECTRICAL MACHINES

Regulations - 2020

Du	ration: 3 Hours M	ax. Mark	ks: 10	00			
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Marks	<i>K</i> –	co			
	Answer ALL Questions						
1.	Which part of a DC machine provides the path for magnetic flux?	1	<i>K1</i>	CO1			
	(a) Commutator (b) Armature Winding (c) Yoke (d) Brushe	S					
2.	Which part of a DC machine provides the path for magnetic flux?	1	<i>K1</i>	CO1			
	(a) Weakens the shunt field (b) Strengthens the shunt field						
	(c) Has no effect on the shunt field (d) Reverses the direction of rotation						
3.	The basic principle of a transformer is:	1	<i>K1</i>	CO2			
	(a) Ohm's Law (b) Electromagnetic induction						
	(c) Thermoelectric effect (d) Electrostatic induction						
4.	Three-phase transformers are generally used because:	1	<i>K1</i>	CO2			
	(a) They are cheaper than single-phase (b) They require less space						
_	(c) They provide balanced power (d) All of the above	7	77.1	go.			
5.	The method commonly used to start a synchronous motor?	1	K1	CO3			
	(a) DOL starter (b) Star-delta starter						
	(c) Using damper winding (d) Frequency control	1	K1	CO3			
6.	In a V-curve of a synchronous motor, the lowest point indicates:	1	K1	COS			
	(a) Maximum Power (b) United Power factor						
7	(c) Maximum Torque (d) Maximum Current The principle of expection of a three phase industion mater is based on	1	K1	CO4			
7.	The principle of operation of a three-phase induction motor is based on: (a) Self-induction (b) Mutual inductance	1	MI	004			
	(c) Faraday's law (d) Rotating Magnetic field						
8.	In rotor resistance control method, speed control is:	1	<i>K1</i>	CO4			
0.	(a) Suitable only for squirrel cage motors (b) Smooth and efficient						
	(c) Inefficient due to power loss (d) Achieved by stator winding change						
9.	Switched reluctance motors are controlled using:	1	<i>K1</i>	CO5			
,	(a) Mechanical switches (b) Thyristors or power electronics						
	(c) Brush commutators (d) Capacitor						
10.	The motor has very smooth and silent operation, making it suitable for audio equipment	? 1	<i>K1</i>	CO5			
	(a) Shaded pole motor (b) Repulsion motor						
	(c) Hysteresis motor (d) Universal motor						
	$PART - B (12 \times 2 = 24 Marks)$						
	Answer ALL Questions	_					
11.	What is the main purpose of commutator and brushes?	2	<i>K1</i>	CO1			
12.	Name Different types of starters.	2	<i>K1</i>	CO1			
13.	Write the significance of back EMF.	2	<i>K1</i>	CO1			
	List the losses in a transformer.	2	<i>K1</i>	CO2			
	Why is transformer rated in KVA? Justify.	2	<i>K1</i>	CO2			
13.	why is transformed factor in KVA: Justify.	-					

16.	List th	e causes of stray losses.	2	K1	CO2		
17.	Name the main parts of synchronous motor.						
18.	Name the starting methods of synchronous motor				CO3		
19.	2. Classify the types of 3-phase induction motor.				CO4		
20.	0. Recall the applications of 3-phase induction motor.				CO4		
21.	Infer t	he principle of a repulsion motor.	2	K2	CO5		
22.	22. Compare the terms rotating and pulsating magnetic fields.						
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions					
23.	a)	Explain the construction and working principle of a generator with neat diagrams.	11	K2	CO1		
	1.	OR	11	K2	CO1		
	b)	Illustrate the different excitation schemes used in D.C. machines with suitable circuit diagrams and applications.	11	K2	COI		
24.	a)	Demonstrate the working principle of single phase transformer and the significance of mutual induction.	11	K2	CO2		
		OR					
	b)	Outline the types and advantages of three-phase transformers over single-phase transformers.	11	K2	CO2		
25.	a)	Summarize the construction and working of a synchronous motor with necessary diagrams.	11	K2	СОЗ		
		OR					
	b)	Contrast the V and inverted V curves of a synchronous motor and their significance in performance analysis.	11	K2	CO3		
26.	a)	Explain the working principle of a three-phase induction motor and distinguish between squirrel cage and slip-ring type. OR	11	K2	CO4		
	b)	Outline the various starting methods of three-phase induction motors and compare their effectiveness.	11	K2	CO4		
27.	a)	Explain the types of single-phase induction motors and their principle of operation. OR	11	K2	CO5		
	b)	Explain the working of a hysteresis motor and the role of hysteresis loss.	11	K2	CO5		
28.	a) (i)	Outline the classification of three-phase induction motors	6	K2	CO4		
	(ii)	Illustrate the torque-speed characteristic of a repulsion motor.	5	K2	CO5		
	()	OR					
	b) (i)	Illustrate the torque-slip characteristics and indicate regions of operation.	6	K2	CO4		
		Outline the applications of single-phase induction motors.	5	K2	CO5		
	` /						