| Reg. No. |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|

| <b>Question Paper Code</b> |
|----------------------------|
|----------------------------|

## B.E. / B. Tech. - DEGREE EXAMINATIONS, APR / MAY 2025

Fifth Semester

## **Electronics and Instrumentation Engineering**

(Common to Instrumentation and Control Engineering)

## 20EIPC503 - DIGITAL SIGNAL PROCESSING

Regulations - 2020

| Dı                                        | Duration: 3 Hours                                                                                                                                                                                                                                           |       | Max. Marks: 100 |     |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-----|--|--|--|
| $PART - A (MCQ) (10 \times 1 = 10 Marks)$ |                                                                                                                                                                                                                                                             |       | <i>K</i> –      | CO  |  |  |  |
|                                           | Answer ALL Questions                                                                                                                                                                                                                                        | Marks |                 |     |  |  |  |
| 1.                                        | What are the important block(s) required to process an input analog signal to get an output                                                                                                                                                                 | t 1   | K1              | CO1 |  |  |  |
|                                           | analog signal?                                                                                                                                                                                                                                              |       |                 |     |  |  |  |
|                                           | (a) A/D converter (b) Digital signal processor                                                                                                                                                                                                              |       |                 |     |  |  |  |
| 2                                         | (c) D/A converter (d) All of the mentioned                                                                                                                                                                                                                  | 1     | V I             | COL |  |  |  |
| 2.                                        | A real valued signal x(n) is called as anti-symmetric if                                                                                                                                                                                                    | 1     | K1              | CO1 |  |  |  |
| 2                                         | (a) $x(n)=x(-n)$ (b) $x(n)=-x(-n)$ (c) $x(n)=-x(n)$ (d) none of the mentioned                                                                                                                                                                               | 1     | K1              | CO2 |  |  |  |
| 3.                                        | What is the z-transform of the following finite duration signal? $r(n) = (2.4570.1)$                                                                                                                                                                        | 1     | ΚI              | CO2 |  |  |  |
|                                           | $x(n) = \{2,4,5,7,0,1\}$                                                                                                                                                                                                                                    |       |                 |     |  |  |  |
|                                           | (a) $2 + 4z + 5z^2 + 7z^3 + z^4$ (b) $2 + 4z + 5z^2 + 7z^3 + z^5$ (c) $2 + 4z^{-1} + 5z^{-2} + 7z^{-3} + z^{-5}$ (d) $2z^2 + 4z + 5 + 7z^{-1} + z^{-3}$                                                                                                     |       |                 |     |  |  |  |
|                                           |                                                                                                                                                                                                                                                             |       |                 |     |  |  |  |
| 4.                                        | What is the set of all values of z for which $X(z)$ attains a finite value?                                                                                                                                                                                 | 1     | <i>K1</i>       | CO2 |  |  |  |
|                                           | (a) Radius of convergence (b) Radius of divergence                                                                                                                                                                                                          |       |                 |     |  |  |  |
|                                           | (c) Feasible solution (d) None of the mentioned                                                                                                                                                                                                             |       | 77.1            | g03 |  |  |  |
| 5.                                        | Find the complex multiplications required for 16 direct computations of DFT.                                                                                                                                                                                | 1     | KI              | CO3 |  |  |  |
| _                                         | (a) 256 (b) 64 (c) 216 (d) 1024                                                                                                                                                                                                                             | 7     | V1              | CO2 |  |  |  |
| 6.                                        | IDFT of the sequence $\{1, 0, 1, 0\}$ is:                                                                                                                                                                                                                   | 1     | K1              | CO3 |  |  |  |
| 7                                         | (a) $\{1, 0, 0, 1\}$ (b) $\{0.5, 0, 0.5, 0\}$ (c) $\{0.5, 1, 0.5, 0\}$ (d) None of the above                                                                                                                                                                | 1     | K1              | CO4 |  |  |  |
| 7.                                        | Which of the following substitution is done in Bilinear transformations? $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                | 1     | ΚI              | CO4 |  |  |  |
|                                           | (a) $s = \frac{2}{T} \left[ \frac{1+Z^{-1}}{1-Z^{-1}} \right]$ (b) $s = \frac{2}{T} \left[ \frac{1-Z^{-1}}{1+Z^{-1}} \right]$ (c) $s = \frac{2}{T} \left[ \frac{1+Z^{-1}}{1+Z^{-1}} \right]$ (d) $s = \frac{2}{T} \left[ \frac{1-Z^{-1}}{1-Z^{-1}} \right]$ |       |                 |     |  |  |  |
| 8.                                        | FIR filters are preferred for applications that require:                                                                                                                                                                                                    | 1     | K1              | CO4 |  |  |  |
|                                           | (a) Minimum phase characteristics (b) Non-linear phase characteristics                                                                                                                                                                                      |       |                 |     |  |  |  |
|                                           | (c) Linear phase characteristics (d) Maximum phase characteristics                                                                                                                                                                                          |       |                 |     |  |  |  |
| 9.                                        | Digital filters are                                                                                                                                                                                                                                         | 1     | <i>K1</i>       | CO5 |  |  |  |
|                                           | (a) Programmable (b) Highly expensive                                                                                                                                                                                                                       |       |                 |     |  |  |  |
|                                           | (c) Consumers very less power (d) Cannot handle low-frequency signals                                                                                                                                                                                       |       |                 |     |  |  |  |
| 10.                                       | The digital signal processing can be used in                                                                                                                                                                                                                | 1     | <i>K1</i>       | CO5 |  |  |  |
|                                           | (a) Image and video processing (b) Speech and audio processing                                                                                                                                                                                              |       |                 |     |  |  |  |
|                                           | (c) Military and space applications (d) All of above                                                                                                                                                                                                        |       |                 |     |  |  |  |
|                                           | $PART - B (12 \times 2 = 24 Marks)$                                                                                                                                                                                                                         |       |                 |     |  |  |  |
|                                           | Answer ALL Questions                                                                                                                                                                                                                                        |       |                 |     |  |  |  |
| 11.                                       | Write the few applications of Digital Signal Processing.                                                                                                                                                                                                    | 2     | <i>K1</i>       | CO1 |  |  |  |
| 12.                                       | Check the stability of the signal $y(n)=a^n u(n)$ .                                                                                                                                                                                                         | 2     | K2              | CO1 |  |  |  |
| 13.                                       | Define the term Nyquist rate.                                                                                                                                                                                                                               | 2     | K1              | CO1 |  |  |  |
|                                           | List the methods to find inverse Z transform.                                                                                                                                                                                                               | 2     | K1              | CO2 |  |  |  |
| 15.                                       | Determine ROC of a signal $x(n)=a^{-n}u(-n-1)$ .                                                                                                                                                                                                            | 2     | K2              | CO2 |  |  |  |
| 16.                                       | Calculate the inverse Z – transform of $X(Z) = \frac{Z}{Z-1}$ .                                                                                                                                                                                             | 2     | K2              | CO2 |  |  |  |
| 17.                                       | Define the term Twiddle factor and Write its magnitude and phase angle.                                                                                                                                                                                     | 2     | <i>K1</i>       | CO3 |  |  |  |
|                                           | Differentiate DIT radix-2 FFT and DIF radix-2 FFT.                                                                                                                                                                                                          | 2     | <i>K</i> 2      | CO3 |  |  |  |
|                                           | Define warping effect.                                                                                                                                                                                                                                      | 2     | <i>K1</i>       | CO4 |  |  |  |
|                                           | - Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create                                                                                                                                                                           |       | 135             | 43  |  |  |  |
| 111                                       | Temento, A2 Onderstand, A5 Typer, A1 Thange, A5 Drandin, A5 Orent                                                                                                                                                                                           |       | 100             |     |  |  |  |

| 20. | Expre     | ess the term linear phase response of a filter.                                                                         |    |            |            |  |  |
|-----|-----------|-------------------------------------------------------------------------------------------------------------------------|----|------------|------------|--|--|
| 21. | What      | are the different stages in pipelining?                                                                                 |    |            |            |  |  |
| 22. | Name      | ame the different buses used in DSP processor.                                                                          |    |            |            |  |  |
|     |           |                                                                                                                         |    |            |            |  |  |
|     |           | $PART - C (6 \times 11 = 66 Marks)$                                                                                     |    |            |            |  |  |
| 22  | ,         | Answer ALL Questions                                                                                                    | 11 | K2         | COL        |  |  |
| 23. | a)        | A discrete time systems can be                                                                                          | 11 | KΖ         | COL        |  |  |
|     |           | (i) Static or dynamic                                                                                                   |    |            |            |  |  |
|     |           | (ii) Linear or non Linear                                                                                               |    |            |            |  |  |
|     |           | (iii) Time invariant or time varying                                                                                    |    |            |            |  |  |
|     |           | <ul><li>(iv) Stable or unstable</li><li>(v) Causal or non causal</li></ul>                                              |    |            |            |  |  |
|     |           | Check the following systems with respect to the properties above                                                        |    |            |            |  |  |
|     |           | y(n)=x(n)+x(n-1).                                                                                                       |    |            |            |  |  |
|     |           | OR                                                                                                                      |    |            |            |  |  |
|     | b)        | Check whether the system is periodic and also determine the fundamental period.                                         | 11 | K2         | COL        |  |  |
|     |           | $x(n) = 2\cos\frac{5\pi}{3}n + 3e^{\frac{j3\pi n}{4}}$                                                                  |    |            |            |  |  |
|     |           | $x(n) = 2\cos\frac{\pi}{3}n + 3e^{-4}$                                                                                  |    |            |            |  |  |
| 24  | - )       |                                                                                                                         | 11 | K2         | CO2        |  |  |
| 24. | a)        | Find Fourier Transform of the signal $x(n) = \left(\frac{1}{3}\right)$ for $0 \le n \le 2$ $x(n) = 0$ , otherwise. Find | 11 | K2         | CO2        |  |  |
|     |           |                                                                                                                         |    |            |            |  |  |
|     |           | the Magnitude and phase for the signal and plot the response.                                                           |    |            |            |  |  |
|     | b)        | OR  Determine the circular convolution of the sequence                                                                  | 11 | K2         | CO2        |  |  |
|     | U)        | Determine the circular convolution of the sequence $x_1(n) = \{1,2,-3,4,-5\}$ and $x_2(n) = \{-2,4,6\}$ .               |    |            | -          |  |  |
|     |           | $X_1(\Pi) = \{1,2,3,4,3\}$ and $X_2(\Pi) = \{2,4,0\}$ .                                                                 |    |            |            |  |  |
| 25. | a)        | Compute the DFT of a sequence. $x(n) = \{1,2,1,2,2,1,2,1\}.$                                                            | 11 | <i>K3</i>  | COS        |  |  |
|     | ,         | OR                                                                                                                      |    |            |            |  |  |
|     | b)        | Compute 8 point FFT of the given sequence using DIT algorithm                                                           | 11 | <i>K3</i>  | CO         |  |  |
|     |           | $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}.$                                                                                    |    |            |            |  |  |
| 26. | <u>a)</u> | Apply the bilinear transformation for the following:                                                                    | 11 | К3         | CO4        |  |  |
| 20. | a)        | , 11 ,                                                                                                                  |    |            |            |  |  |
|     |           | $H_a(S) = \frac{2}{(s+1)(s+2)}$ with T=1 sec find out H(Z).                                                             |    |            |            |  |  |
|     |           | OR                                                                                                                      |    | ***        | <b>a</b> o |  |  |
|     | b)        | The specification of LPF is given by                                                                                    | 11 | <i>K3</i>  | CO4        |  |  |
|     |           | $0.8 \le  H(\omega)  \le 1$ ; $0 \le \omega \le 0.2\pi$                                                                 |    |            |            |  |  |
|     |           | $ H(\omega)  \le 0.2;$ $0.32\pi \le \omega \le \pi$                                                                     |    |            |            |  |  |
|     |           |                                                                                                                         |    |            |            |  |  |
|     |           | Design Chebyshev filter using IIT.                                                                                      |    |            |            |  |  |
| 27  | 2)        | Evaloin Man Navanana Hamand anabita atuma and madified Hamand anabita atuma for                                         | 11 | K2         | COS        |  |  |
| 27. | a)        | Explain Von Neumann, Harvard architecture and modified Harvard architecture for                                         | 11 | K2         | CO.        |  |  |
|     |           | the computer.  OR                                                                                                       |    |            |            |  |  |
|     | b)        | Explain the various types of addressing modes of digital signal processor with                                          | 11 | K2         | COS        |  |  |
|     | -/        | suitable example.                                                                                                       |    |            |            |  |  |
|     |           | •                                                                                                                       |    |            |            |  |  |
| 28. | a) (i)    | Obtain the direct form-I realization for the given difference equation                                                  | 6  | K2         | CO4        |  |  |
|     | ***       | y(n)=0.5y(n-1)-0.25y(n-2)+x(n)+0.4x(n-1).                                                                               | _  |            | 901        |  |  |
|     | (11)      | Draw the architecture of a DSP processor for implementing a DSP algorithm.                                              | 5  | <i>K</i> 2 | COS        |  |  |
|     |           | Explain its features.                                                                                                   |    |            |            |  |  |
|     | b) (i)    | OR Explain the design of lowpass digital butterworth filter.                                                            | 6  | K2         | CO4        |  |  |
|     |           | Explain the design of lowpass digital butter worth Thter.  Explain the architecture of TMS 320C54X with a neat diagram. | 5  | K2         | COS        |  |  |
|     | (11)      | months are interested of 11125 52005 111 with a noat diagram.                                                           |    |            |            |  |  |
|     |           |                                                                                                                         |    |            |            |  |  |