Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13452

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Sixth Semester

Electronics and Instrumentation Engineering 20EIPC603 - POWER ELECTRONICS DRIVES AND CONTROL

Regulations - 2020

	Regulations - 2020			
Dι	uration: 3 Hours Max	k. Mar	ks: 1	00
	M1	<i>K</i> –	CO	
	Answer ALL Questions	Marks	Level	CO
1.	Limitation of a Bipolar Junction Transistor (BJT) in power applications is:	1	<i>K1</i>	CO1
	(a) Low switching speed (b) High gate drive power requirement			
	(c) High forward voltage drop (d) Difficulty in integration with integrated circuits			
2.	A Silicon-Controlled Rectifier (SCR) is a type of:	1	<i>K1</i>	CO1
	(a) Unidirectional switch (b) Bidirectional switch			
	(c) Power diode (d) Bipolar junction transistor			
3.	In a single-phase half-wave controlled rectifier, the output DC voltage depends on the:	1	<i>K1</i>	CO2
	(a) Load current (b) Input AC voltage and firing angle			
	(c) Frequency of the AC supply (d) Type of rectifier used			
4.	In a thyristor-based rectifier, increased source inductance leads to:	1	<i>K1</i>	CO2
	(a) Shorter commutation period (b) Higher efficiency			
	(c) Lower power factor (d) Higher output voltage			
5.	Type of DC to DC converter provides electrical isolation between input and output?	1	<i>K1</i>	CO3
	(a) Buck converter (b) Boost converter			
	(c) Fly back converter (d) Buck-boost converter			
6.	The device is commonly used as the switching element in a DC-DC converter?	1	<i>K1</i>	CO3
	(a) Diode (b) MOSFET (c) Transformer (d) Resistor			
7.	The main disadvantage of a square wave inverter?	1	K1	CO4
	(a) High cost (b) Complex circuitry (c) High harmonic distortion (d) Large size			
8.	Type of inverter is most suitable for industrial motor drives?	1	<i>K1</i>	CO4
	(a) Square wave inverter (b) Pure sine wave inverter			
	(c) Current source inverter (d) Voltage source inverter			
9.	The following is NOT a component of an electric drive system?	1	<i>K1</i>	CO5
	(a) Power modulator (b) Motor (c) Controller (d) Alternator			
10.	The drive best suited for applications requiring frequent starting, stopping, and reversing?	1	<i>K1</i>	CO5
	(a) AC drive (b) DC drive (c) Stepper drive (d) Servo drive			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	Define the term pinch off voltage of MOSFET.	2	<i>K1</i>	CO1
	<u>-</u>	2	<i>K1</i>	CO1
	Distinguish between SCR and TRIAC.	2	K2	CO1
	What is meant continuous current operation of thyristor converter?	2	<i>K1</i>	CO2
	Illustrate the PIV of a thyristors.	2	K2	CO2
16.	Summarize the roles of freewheeling diode in a Full converter.	2	<i>K</i> 2	CO2
	Mention any two applications of SMPS.	2	<i>K1</i>	CO3
	What is resonant converter? States its advantages.	2	K1	CO3
	Recite the merits and demerits of CSI.	2	K1	CO4
	Judge thyristors are not preferred for Inverter.	2	K2	CO4
	Illustrate static Ward-Leonard drive.	2	K2	CO5
	What is meant by slip power recovery scheme?	2	<i>K1</i>	CO5
	V 11			
121	Domamban V2 Understand V2 Apply VA Analyza V5 Evaluate V6 Create		121	52

PART - $C(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23.	a)	With neat sketch explain the turn on and turn off characteristic of SCR. OR	11	K2	COI
	b)	Describe with neat sketch working and characteristics of IGBT.	11	K2	CO1
24.	a)	The full-wave three-phase controlled rectifier has a three phase 415V, 50Hz source (240V Phase), and provides 100A constant load current. Determine: (i) The average and rms thyristor current. (ii) The rms and fundamental line current. The fundamental apparent power. OR	11	K3	CO2
	b)	A single-phase half wave rectifier with an AC voltage of 150V has a pure resistive load of 9Ω . The firing angle of the thyristor is $\pi/2$. Determine the (i) Rectification Efficiency (ii) Form Factor (iii) Peak inverse voltage of the SCR	11	K3	CO2
25.	a)	With neat diagrams, describe the construction and working of step-up chopper and its steady state analysis. Also, give its application. OR	11	K2	CO3
	b)	Draw and explain the block schematic of SMPS and mention its advantages over linear power supply.	11	K2	CO3
26.	a)	Discover the operation of 3 phase bridge inverter for 180-degree mode of operation with aid of relevant phase and line voltage wave forms. OR	11	K2	CO4
	b)	Establish the Principle of operation of single phase CSI with power circuit. Draw the equivalent circuits and relevant waveforms.	11	K2	CO4
27.	a)	Discuss in detail Rectifier based Electric Breaking. OR	11	K2	CO5
	b)	Generalize the operation of Chopper controlled DC drives.	11	K2	CO5
28.	a) (i)	What is PWM? List the various PWM techniques and explain any two of them.	6	K2	CO4
	(ii)	Explain the operation of V/f controlled AC Drives.	5	K2	CO5
		OR	_		- ·
	, , ,	Compare ZVS with ZCS.	6	<i>K</i> 2	CO4
	(ii)	Discuss briefly Vector control method of AC Drives.	5	K2	CO5