Question Paper Code

13605

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fourth semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20EIPW401 - DIGITAL ELECTRONICS WITH LABORATORY

Regulations - 2020

1	Duration: 3 Hours Ma	x. Mar	ks: 10	00				
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Marks	K – Level	co				
Answer ALL Questions				CO				
1.	Convert the octal number (4356) ₈ to Decimal number.	1	<i>K1</i>	CO1				
	(a) $(2276)_{10}$ (b) $(2286)_{10}$ (c) $(2176)_{10}$ (d) $(2186)_{10}$	_						
2.	In Boolean algebra, the bar sign (-) indicates	1	K2	CO1				
	(a) OR operation (b) AND operation (c) NOT operation (d) None of the above	,	77.1	G02				
3.	Which gate is best used as a basic comparator?	1	<i>K1</i>	CO2				
4	(a) NOR (b) OR (c) EX-OR (d) AND	1	νa	CO2				
4.	. The initial factor on a speed of parametradact is							
	(a) Input delay (b) Carry propagation delay							
5	(c) Input propagation delay (d) Output delay	1	<i>K1</i>	CO3				
5.	A ring counter is same as (a) Up-down counter (b) Parallel counter (c) Shift registers (d) None of above	1	11.1	005				
6.	A flip flop stores	1	<i>K</i> 2	CO3				
0.	(a) 10 bit of information (b) 1 bit of information							
	(c) 2 bit of information (d) 3-bit information							
7.	The number of flipflop required to build a Mod 15 counter is	1	<i>K1</i>	CO4				
	(a) 4 (b) 6 (c) 3 (d) 5							
8.	In DOWN-counter, each flip-flop is triggered by	1	<i>K</i> 2	CO4				
	(a) Theoutput of the next flip-flop							
	(b) The normal output of the preceding flip-flop							
	(c) The clock pulse of the previous flip-flop							
	(d) The inverted output of the preceding flip-flop							
9.	What does VHDL stand for?	1	<i>K1</i>	CO5				
	(a) Virtual Hardware Description Language							
	(b) Very High-Speed Digital Logic							
	(c) Very High-Speed Integrated Circuit Hardware Description Language							
10	(d) Variable High-Speed Device Language	1	K2	CO5				
10.	In VHDL, an <i>entity</i> is used to: (a) Define the internal structure of a circuit	1	K2	COS				
	(a) Define the internal structure of a circuit (b) Specify inputs, outputs, and external ports of a circuit							
	(c) Create simulation waveforms							
	(d) Connect multiple processes							
	(a) Connect multiple processes							
$PART - B (12 \times 2 = 24 Marks)$								
	Answer ALL Questions							
11.	Name the universal gates. Why they are called so?	2	K1	CO1				
12.	Write the truth table of Exclusive NOR gate and mention its applications.	2	<i>K1</i>	CO1				
13.	Show how to connect NAND gates to get an AND gate and OR gate.	2	K2	CO1				
14.	Write the truth table and expression for half adder.	2	<i>K1</i>	CO2				
15.	Convert a 2 to 4 line decoder with enable input to 1x 4 demultiplexer.	2	K2	CO2				
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create			13605					

16.	Draw	a 1:4 Demultiplexer using logic gates.	2	<i>K1</i>	CO2				
17.	Draw	the state table and excitation table of the T flip flop.	2	<i>K1</i>	CO3				
18.	Differ	entiate between the edge triggering and level triggering.	2	K2	CO3				
19.	Write	the characteristic equation of a JK Flip flop.	2	<i>K1</i>	CO4				
20.	Distin	guish between Mealy and Moore machines.	2	K2	CO4				
21.	List th	e operators present in VHDL.	2	<i>K1</i>	CO5				
22.	Comp	are structural, behavioral, and data flow modelling in VHDL.	2	K2	CO5				
PART - C (6 × 11 = 66 Marks) Answer ALL Questions									
23.	a)	Construct and analyze the Karnaugh Map for the given function $F(A,B,C,D,E) = \Sigma m(6,9,13,18,19,25,27,29,31) + \Sigma d(2,3,11,15,17,24,28)$ and illustrate the corresponding logic diagram.	11	K2	CO1				
	b)	OR Illustrate and explain the TTL logic circuit for a three-input NAND gate, highlighting its working principles.	11	K2	CO1				
24.	a)	Design a Binary-to-Gray code converter and implement it using logic gates. OR	11	К3	CO2				
	b)	Explain 1:16 demultiplexer.	11	К3	CO2				
25.	a) (i)	Explain the operation of JK flip flop with neat diagram.	6	<i>K3</i>	CO3				
	(ii)	Convert to D flip-flop from a J-K flip-flop.	5	<i>K3</i>	CO3				
	b)	OR Explain the operation of master slave flip flop and show how the race around condition is eliminated.	11	К3	СОЗ				
26.	a)	Apply the design of 4-bit BCD counter using T flip flops that counts in the following way: 0000,0001, 0010,0011,,1001 and back to 0000 (i) Draw the state diagram.	11	К3	CO4				
		(ii) List the next state table.(iii) Draw the logic diagram of the circuit.							
	b)	OR Construct a MOD-10 synchronous counter using JK flip flops. Write an execution table and state table.	11	К3	CO4				
27.	a)	Illustrate the concept of structural modeling in VHDL by Designing a Full Adder as an example.	11	К3	CO5				
	b)	OR Create the behavioral and structural models of a 4-to-1 multiplexer in VHDL and test its working.	11	К3	CO5				
28.	a) (i)	Explain in detail about critical races and non-critical races in asynchronous sequential circuits with examples.	6	К3	CO4				
	(ii)	Discuss the role of a process statement in VHDL. OR	5	К3	CO5				
	b) (i)	Explain the concept, working, characteristics, implementation and application of PROM.	6	К3	CO4				
	(ii)	Write the VHDL behavioral model for a T flip-flop.	5	<i>K3</i>	CO5				