Reg. No.								

Question Paper Code 13582

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fifth Semester

Instrumentation and Control Engineering 20ICEL503 - UNIT OPERATIONS AND CONTROL

Regulations - 2020

(Heat and Mass Transfer Data Book is permitted)

]	Ouration: 3 Hours M	ax. Mar	ks: 1(00			
PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$							
	Answer ALL Questions	Marks	K Level	co			
1.	Identify the equipment is used to reduce particle size to fine powder?	1	K1	CO1			
	(a) Jaw crusher (b) Ball mill (c) Vibrating screen (d) Bin	1	K1	COI			
2.	The equation for calculating the angle of repose is	1	K1	CO1			
	(a) $\tan(h/d)$ (b) $\tan(1/2h/d)$ (c) $\tan(h/2d)$ (d) $\tan(1/2d)$						
3.	3. Choose the option that works on the principle of centrifugal separation?						
	(a) Sedimentation tank (b) Cyclone separator	1	KI	CO2			
4.	(c) Thickener (d) Hopper The mixing of immiscible liquids requires						
4.	(a) Paddle agitator (b) Propeller mixer (c) Turbine agitator (d) None of thes	<i>1</i>	<i>K1</i>	CO2			
5.	Synthesis Reaction is						
٥.	(a) $AB = A + B$ (b) $A + BC = AC + B$	1	K1	CO3			
	(c) $A + B = AB$ (d) $AB+CD = AC + BD$						
6.	Batch distillation is primarily controlled by	1	νı	CO3			
	(a) Pressure (b) Flow rate (c) Reflux ratio (d) Temperature	1	K1	003			
7.	Recognize the first step in the crystallization process	1	K1	CO4			
0	(a) Drying (b) Nucleation (c) Cooling (d) Precipitation	-					
8.	is a process used to dry extremely heat- sensitive materials.	1	K1	CO4			
0	(a) Drum drying (b) spray drying (c) Freeze drying (d) Tray drying						
9.	Select the fluxes which is not used in steel making (a) Limestone (b) Dolomite (c) Quartzite (d) Fluorspar	1	K1	CO5			
10	Pulp industry mainly uses which separation technique?						
10.	(a) Cyclones (b) Magnetic separators (c) Gravity settling (d) Flocculation	<i>1</i>	<i>K1</i>	CO5			
	DADT D (12 v. 2 = 24 Mowles)						
	PART - B $(12 \times 2 = 24 \text{ Marks})$ Answer ALL Questions						
11.	State the principle of granulation and list its industrial applications.	2	K1	CO1			
	12. Name the four common ways of breaking solids in size reduction machines.						
		2	K1	COI			
	List the types of settling.	2	K1	COI			
14.		2	<i>K</i> 2	CO2			
	Discuss the applications of electrostatic separators in industrial separation processes.	2	K2	CO2			
16.	Explain the concept of thickening and distinguish it from sedimentation.	2	K2	CO2			
17.	Recall a reboiler and its function in a distillation column.	2	<i>K1</i>	CO3			
18.	What is More Volatile component?	2	<i>K1</i>	CO3			
19.	Explain conduction process.	2	K2	CO4			
20.	Explain Forced Draught Cooling Tower.	2	K2	CO4			
21.	21. Describe the role of electrostatic separation in the leather industry.						
22.	Identify how magnetic separation enhances raw material quality in the steel industry.	2	K2	CO5			
V1	Demombers V2 Understands V2 Applys VA Analyzes V5 Evaluates V6 Create		1359	2			

PART - C $(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23.	a) (i)	Infer a conveyor and explain different types of conveyors used in industries with a neat sketch.	11	K2	CO1
		OR			
	b) (i)	Describe the working principle of an electrostatic separator with a labeled sketch.	6	K2	CO1
	(ii)	Explain the principle of granulation and its importance in size enlargement.	5	K2	CO1
24.	a)	Illustrate the principle construction and working of Laboratory Batch Sedimentation Test and show Settling Velocity Curve. OR	11	K2	CO2
	b)	Explain the principle construction and working of Cyclone separator.	11	K2	CO2
25.	a)	Explain how combustion control is implemented by means of cross-limited combustion control scheme in boiler operations of thermal power plant. \mathbf{OR}	11	K2	CO3
	b)	Interpret McCabe -Thiele method in distillation process.	11	K2	CO3
26.	a)	Analyze the roles of nucleation and crystal growth in crystallization processes. How do operating parameters such as temperature, concentration, and agitation affect each stage?	11	K2	CO4
		OR			
	b)	Analyze the operation of a cooling tower by breaking down its heat and mass transfer mechanisms. How do environmental conditions impact its performance?	11	K2	CO4
27.	a)	Explain the unit operations involved in Thermal power plant. OR	11	K2	CO5
	b)	Summarize steel production process with a neat sketch.	11	K2	CO5
28.	a) (i)	Compare and contrast single-effect and multiple-effect evaporators in terms of steam economy, operational complexity, and cost.	6	K2	CO4
	(ii)	Paraphrase Sulifite process with neat sketch. OR	5	K2	CO5
	b) (i)	Evaluate the suitability of different refrigeration cycles used in chemical industries for various applications.	6	K2	CO4
	(ii)	Which are the important processes involved in Leather manufacturing? Explain.	5	K2	CO5