Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13428

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Seventh Semester

Electronics and Instrumentation Engineering 20ICPW701 - INSTRUMENTATION SYSTEM DESIGN WITH LABORATORY

Regulations - 2020

Dι	. Marks: 100						
		<i>K</i> –	~~				
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$ Answer ALL Questions	Marks	Level	co			
	Which factor most critically influences the pressure drop across an orifice plate in a flow measurement system?	1	Kl	CO1			
	(a) Pipe material (b) Fluid color (c) Orifice diameter (d) Length of the pipeline	7	17.1	GO1			
	Which device is typically used for cold junction compensation in thermocouple circuits? (a) LVDT (b) RTD (c) Thermistor (d) Relay	1	Kl	CO1			
3.	What is the primary sensing element in a Bourdon gauge?	1	K1	CO2			
	(a) Diaphragm (b) Bellows (c) Helical spring (d) Curved tube Which of the following is commonly used for purging in level measurement systems?	1	K1	CO2			
	(a) Nitrogen (b) Compressed air (c) Steam (d) Oxygen Which type of pump is best suited for handling viscous fluids?	1	K1	CO3			
	(a) Centrifugal pump (b) Reciprocating pump (c) Gear pump (d) Jet pump	_					
	Which instrument is commonly used to measure the discharge pressure of a pump? (a) Thermocouple (b) Pressure gauge (c) Flow meter (d) Tachometer	1	K1	CO3			
7.	Which component is essential for interfacing sensors with a microcontroller in a data	1	K1	CO4			
	acquisition system? (a) Encoder (b) ADC (Analog-to-Digital Converter)						
	(c) DAC (Digital-to-Analog Converter) (d) Relay						
	What is the primary purpose of an annunciator circuit in industrial control systems? (a) Data storage (b) Signal amplification (c) Fault indication (d) Speed control	1	Kl	CO4			
9.	In a PID controller, the derivative term is primarily responsible for:	1	<i>K1</i>	CO5			
	(a) Reducing steady-state error (b) Anticipating future error (c) Increasing gain (d) Minimizing input signal						
10.	The proportional gain in an electronic P controller affects:	1	K1	CO5			
	(a) Only the speed of response(b) Only the stability(c) Both speed of response and steady-state error(d) Only noise reduction						
	(c) Bour speed of response and steady-state error (d) Only hoise reduction						
PART - B $(12 \times 2 = 24 \text{ Marks})$ Answer ALL Questions							
11.	Infer that the orifice plate not always preferred for low-flow measurements in industrial	2	K2	CO1			
	systems. Outline the role of a balancing resistor in an RTD measuring circuit.	2	K2	CO1			
13.	Why is cold junction compensation necessary in thermocouple circuits, and how does an	2	K2	COI			
	RTD help in it? List the different forms of bourdon tube design.	2	K1	CO2			
15.	15. Show that the actuator design is critical in achieving accurate valve positioning.						
16.	Why is the selection of valve body material important in control valve design for corrosive environments?	2	K2	CO2			
	How does cavitation occur in centrifugal pumps, and how can it be minimized?	2	<i>K1</i>	CO3			
	In what ways pipework layout affects overall pump efficiency.	2	<i>K1</i>	CO3			
	Interlocks are used in microcontroller-based control systems. Summarize it.	2	<i>K</i> 2	CO4			
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create				13428			

	20. Explain how a microcontroller processes data from multiple sensors in a DAQ system.				
		e how the bias adjustment important in the design of a PI controller. on the impact of increasing the integral gain in a P+I controller.	2	K2 K1	CO5
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions			
23.	a)	Enumerate the suitable case studies DP transmitter parameters used for calibration. OR	11	K2	COL
	b)	Summarize the design parameters used for the selection of Thermocouples as a widely used temperature sensor in industries.	11	K2	COI
24.	a)	Illustrate with a neat schematic diagram Direct action Pneumatic Actuator and reverse action Pneumatic Actuator. Also explain in brief safe failure operation of Spring Actuators.	11	K2	CO2
	1.	OR	11	W2	000
	b)	Elaborate in detail valve flow characteristics with necessary diagrams.	11	<i>K</i> 2	CO2
25.	a)	Demonstrate the Working Principle and operation of a) Positive displacement pump and b) Centrifugal pump.	11	K2	CO3
		OR		1/2	GO.
	b)	Enumerate the pump characteristic curves, including what they represent and how to interpret the information they provide.	11	K2	CO3
26.	a)	Explain with interfacing diagram in detail for Microcontroller Based Data Acquisition System.	11	K2	CO4
		OR			
	b)	Draw and explain an Alarm Logic circuit for House Alarm Application.	11	K2	CO4
27.	a)	Construct a complete electronic PID controller circuit for a DC motor speed control application. Include the functional blocks, explanation of each section, and methods for tuning.	11	К3	COS
		OR			
	b)	Develop an electronic P+I controller setup for a liquid level control system. Explain the circuit design, adjustment of controller parameters, and the effect of bias and set point variations.	11	<i>K3</i>	COS
28.	a) (i)	Evaluate the design choices between using a microcontroller versus a microprocessor for implementing a real-time P+I+D controller. Discuss scenarios where one is preferred over the other.	6	K2	CO4
	(ii)	Compare and evaluate the effectiveness of PD and PI controllers in systems with fast dynamic changes. Highlight their advantages and limitations. OR	5	K2	COS
	h) (i)	Summarize the effectiveness of hardware versus software-based interlocks in	6	K2	CO4
		safety-critical systems. Provide examples to support your reasoning.			
	(11)	Show the role of tuning methods (e.g., Ziegler-Nichols) in optimizing electronic PID controller performance for temperature regulation.	5	K2	COS