Question Paper Code	13440
----------------------------	-------

B.E. / **B.Tech.** - **DEGREE EXAMINATIONS, APRIL** / **MAY 2025**

Seventh Semester

Information Technology

(Common to Computer Science and Engineering)

20ITPC701 - CRYPTOGRAPHY AND NETWORK SECURITY

Regulations - 2020

	Regulations - 2020					
Duration: 3 Hours Max. Marks: 100						
$PART - A (MCQ) (10 \times 1 = 10 Marks)$			<i>K</i> –	CO		
	Answer ALL Questions	Marks	Level	co		
1.	1. What is the main purpose of using a product cryptosystem in encryption?			CO1		
	(a) To speed up the encryption process					
	(b) To combine multiple transformations, like substitution and permutation, for stronger					
	security					
	(c) To store encryption keys in a database					
	(d) To compress data before encryption	1	K2	go1		
2.	2. If the message "HELLOWORLD" is encrypted using the Rail fence technique with 2 rails			CO1		
	what will be the ciphertext?					
2	(a) HLOOLELWRD (b) HELOWORLD (c) HWEOLLRLOD (d) None of the above	1	νa	con		
3.	Find the result of the following operation: -18 mod 14	1	K2	CO2		
4	(a) -4 (b) -18 (c) 1 (d) 10	1	V1	CO2		
4.	Which of the following is true for a finite field?	1	K1	CO2		
	(a) Every element has a multiplicative inverse (b) Division is not allowed (c) The number of elements must be even (d) Addition is not associative					
_	(c) The number of elements must be even (d) Addition is not associative	1	<i>K</i> 2	CO3		
5.	What is the main advantage of Elliptic Curve Cryptography (ECC) over RSA?	1	K2	003		
	(a) ECC provides equal security with smaller key sizes, reducing processing overhead (b) ECC requires more memory than RSA					
	(c) ECC is easier to implement than RSA					
	(d) ECC supports only digital signatures, not encryption					
6.	Find the value of $\varphi(10)$	1	<i>K</i> 2	CO3		
0.	(a) 10 (b) 9 (c) 4 (d) 1					
7.	Identify the number of key(s) used to encrypt and decrypt the data, in symmetric encryption	1	<i>K</i> 2	CO4		
,.	(a) Two keys (b) One key (c) No key (d) Three keys					
8.	If an attacker gains access to the AES encryption key used in a system, what is the most	1	<i>K</i> 2	CO4		
٠.	serious consequence?					
	(a) They can only read file names, not file content					
	(b) They can reset the encryption algorithm					
	(c) They must still guess the password to decrypt the data					
	(d) They can decrypt all data encrypted with that key					
9.	Who issues an X.509 certificate?	1	<i>K1</i>	CO5		
	(a) Internet Service Provider (ISP) (b) Certificate authority (CA)					
	(c) Firewall administrator (d) Web browser					
10.	What does a packet filtering firewall do?	1	K1	CO6		
	(a) It encrypts all outgoing emails					
	(b) It scans computers for viruses					
	(c) It checks each IP packet against rules and allows or blocks it					
	(d) It stores all incoming packets for later review					
	$PART - B (12 \times 2 = 24 Marks)$					
	Answer ALL Questions					
11	Construct a 5 x 5 key matrix for the keyword 'communication' using playfair cipher	2	<i>K</i> 2	CO1		
11.	method.					
12.	Compare active attack and passive attack.	2	<i>K</i> 2	CO1		
	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create	1.	3440	1		
	1					

13.	Define	e an algebraic structure.	2	<i>K1</i>	CO
		narize the key properties of modular arithmetic.	2	K2	CO_2
		ifferent techniques used for the distribution of public keys.	2	<i>K1</i>	CO.
16.	Find t	he result of 6^{10} mod 11.	2	K2	CO.
		entiate between stream cipher and block cipher.	2	<i>K</i> 2	CO ₂
		are the four main stages in each round of AES algorithm?	2	K1	CO ₂
		guish between message authentication and entity authentication.	2	K2	CO:
20.		the some advantages and disadvantages of using long passwords.	2	K2	CO:
			2	K2	CO
		fy three types of intruders.	2	K1	CO
22.	wnat	is Transport Layer Security (TLS)?	2	ΚI	CO
		$PART - C (6 \times 11 = 66 Marks)$			
		Answer ALL Questions			
23.	a) (i)	With a block diagram explain conventional encryption model and entities involved.	6	<i>K</i> 2	CO.
		Explain Steganography and list its uses.	5	K2	CO.
		OR			
	b)	Summarize about security services defined in X.800.	11	K2	CO
2.4	`		11	W2	CO
24.	a)	Use the extended Euclidean algorithm to find the modular multiplicative inverse of 1234 mod 4321.	11	<i>K3</i>	CO2
	1 \	OR	11	К3	CO2
	b)	Utilize the concepts of groups, rings, and fields to explain their importance in	11	KJ	CO2
		cryptographic algorithms.			
25.	a)	Write RSA algorithm. Perform encryption and decryption using the RSA algorithm	11	<i>K3</i>	CO.
20.	u)	for the following: $p = 7$, $q = 11$, $e = 13$, $e = 13$, $e = 13$.			
		OR			
	b)	Alice and Bob use the Diffie-Hellman key exchange technique with a common	11	<i>K3</i>	CO.
	U)	prime $q = 23$ and a primitive root $\alpha = 5$.			
		(i) If Bob has a public key $Y_B = 1.0$, what is Bob's private key Y_B ?			
		(ii) If Alice has a public key $Y_A = 8$, what is the shared key K with Bob?			
		(iii) Show that 5 is a primitive root of 23.			
26.	a)	Examine the encryption and decryption processes of Simplified DES (S-DES) in	11	<i>K4</i>	CO ₂
20.	u)	detail, illustrating the results at each step.			
		OR			
	b)	Analyze the RC4 stream cipher in detail by presenting its working mechanism,	11	<i>K</i> 4	CO4
	U)	• • • • • • • • • • • • • • • • • • • •	11	11.7	
		pseudocode, and a supporting diagram.			
27.	a)	Identify the main components of the Kerberos authentication system. Explain the	11	<i>K3</i>	CO
27.	u)	role and purpose of the following two bi-directional exchanges involved in the			
		Kerberos authentication process with a diagram:			
		<u> </u>			
		(i) Between the client and the Key Distribution Center (KDC), the Ticket			
		Granting Service (TGS)			
		(ii) Between the client and the application server.			
		OR		***	
	b)	Apply the Digital Signature Algorithm (DSA) to show how it helps protect digital	11	<i>K3</i>	CO
		messages. Also, write the basic steps to create and verify a digital signature using			
		DSA.			
20			7 1	17.4	CO
28.	a)	Analyze threats to a wireless network by examining their nature and impact on	11	K4	CO
		system security. OR			
	b)		11	<i>K4</i>	CO
	b)	Categorize the key services offered by Pretty Good Privacy (PGP), and illustrate		11.7	
		each with examples.			