Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13465

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Seventh Semester

Mechanical Engineering

20MEEL712 - COMPOSITE MATERIALS AND MECHANICS

Regulations - 2020

Du	ration: 3 Hours	ax. Ma	rks: 1	.00
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$	Marks	<i>K</i> –	co
	Answer ALL Questions			
1.	What is the primary purpose of reinforcement in composites?	1	<i>K1</i>	CO1
	(a) Reduce weight (b) Increase strength and stiffness			
2.	(c) Enhance conductivity (d) Improve flexibility What is the main advantage of thermoplastics over thermosets?	1	<i>K1</i>	CO1
۷.	(a) Higher stiffness (b) Recyclability (c) Low cost (d) Higher strength			
3.	Which method is best suited for making long uniform profiles in PMCs?	1	<i>K1</i>	CO2
	(a) Hand layup (b) Filament winding (c) Pultrusion (d) Compression molding			
4.	What process involves injecting resin into a closed mold with dry fibers?	1	<i>K1</i>	CO2
	(a) Pultrusion (b) Spray-up (c) Resin Transfer Molding (d) Filament winding			
5.	What is the primary benefit of titanium-based MMCs?	1	<i>K1</i>	CO3
_	(a) Low strength (b) Corrosion resistance (c) High density (d) Poor thermal stability	7	77.1	G01
6.	Which MMC processing technique occurs in the solid state?	1	K1	CO3
7	(a) Stir casting (b) Squeeze casting (c) Diffusion bonding (d) Spray deposition	1	K1	CO4
7.	Which method involves creating ceramics through chemical precipitation? (a) Slip casting (b) Co-precipitation (c) Tape casting (d) Calendaring	1	K1	CO4
8.	What is the main reinforcement in carbon-carbon composites?	1	<i>K1</i>	CO4
ο.	(a) Ceramic fibers (b) Glass fibers (c) Carbon fibers (d) Metallic whiskers			
9.	What does the β -matrix in laminated constitutive equations represent?	1	<i>K1</i>	CO5
	(a) Extensional stiffness (b) Bending stiffness (c) Coupling stiffness (d) Shear stiffness	S		
0.	What property is critical for CMCs in high-temperature environments?	1	<i>K1</i>	CO6
	(a) Low weight (b) Wear resistance (c) Thermal stability (d) Electrical conductivity			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	What is a composite material?	2	<i>K1</i>	CO1
12.	Why are composite materials needed in the aerospace industry?	2	K1	CO1
13.	Define hand layup in polymer matrix composites.	2	K1	CO2
l 4 .	Differentiate between pultrusion and filament winding techniques in polymer matrices composites.	x 2	K2	CO2
15.	State one advantage of powder metallurgy techniques in MMC manufacturing.	2	<i>K1</i>	CO3
16.	Define diffusion bonding in the context of metal matrix composites.	2	<i>K1</i>	CO3
17.	Define Ceramic Matrix Composites.	2	<i>K1</i>	CO4
18.	List four physical methods used in the processing of Ceramic Matrix Composites.	2	<i>K1</i>	CO4
19.	Compare balanced and symmetric laminates in terms of their stacking sequences.	2	K2	CO5
20.	Define Quasi-Isotropic Laminates in mechanics of composites.	2	K1	CO5
21.	List the method of consolidation used in the processing of Ceramic Matrix Composites.	2	K1	CO6
	What is the process of slip casting in the shaping of Ceramic Composites?	2	K1	CO6

PART - C $(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23.	a)	List the characteristics of composite materials and state some of their applications.	11	<i>K1</i>	CO1			
		OR						
	b)	Write the physical and chemical properties of various plant fibers.	11	<i>K1</i>	CO1			
24.	a)	Explain the hand layup composite fabrication process with appropriate sketches.	11	K2	CO2			
		OR						
	b)	Explain various thermoplastic matrix composite fabrication processes with sketch.	11	K2	CO2			
25.	a)	With neat sketches explain about in situ process by unidirectional solidification.	11	K2	СОЗ			
		OR						
	b)	Explain any two processing techniques of MMCs with neat sketches.	11	K2	СОЗ			
26.	a)	Explain with a neat sketch, the techniques of consolidation and shaping of Ceramic Composites.	11	K2	CO4			
		OR						
	b)	Explain the Carbon Fiber Reinforcements Matrix Systems with neat sketches.	11	K2	CO4			
27.	a)	Explain (a) Generalized Hooke's Law (b) Laminated anisotropic plates.	11	K2	CO5			
OR								
	b)	Derive the expression for lamina constitutive equations.	11	K2	CO5			
28.	a)	Write the mechanical properties and applications of CMCs in detail.	11	Kl	CO6			
		OR						
	b)	Write about the sintering techniques in CMC's with neat sketches.	11	K1	CO6			