Question Paper Code 13677

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

Mechanical Engineering 20MEPC303 - ENGINEERING METALLURGY

Regulations - 2020

Duration: 3 Hours				00			
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$			<i>a</i>			
	Answer ALL Questions	Marks	Level	co			
1.	Select the value of Peritectic temperature from the following values.	1	K1	CO1			
	(a) $727 ^{\circ}\text{C}$ (b) $758 ^{\circ}\text{C}$ (c) $1148 ^{\circ}\text{C}$ (d) $1495 ^{\circ}\text{C}$						
2.	Which is the most tough among the steels given their carbon composition?	1	K1	CO1			
	(a) 0.1 % (b) 0.25 % (c) 0.3 % (d) 0.88 %	,	***	G 0.2			
3.	Heat treatment of metal is necessary	1	<i>K1</i>	CO2			
	(a) To produce certain desired properties						
	(b) To make good appearance on the component						
	(c) To increase strength of the metal(d) To make the metal rust proof						
4.	During normalizing process, steel is cooled	1	<i>K1</i>	CO2			
٦.	(a) In still air to room temperature (b) In oil (c) By forced air (d) In water						
5.	Precipitation hardening is also known as	1	K1	CO3			
	(a) Age hardening (b) Dispersion hardening						
	(c) Grain boundary strengthening (d) Strain hardening						
6.	Dispersion hardening is a type of	1	<i>K1</i>	CO3			
	(a) Second phase particle strengthening (b) Strain hardening						
	(c) Solid solution hardening (d) Precipitation hardening						
7.	Steels containing up to 3% to 4% of one or more alloying elements are known as	· 1	<i>K1</i>	CO4			
0	(a) Low alloy steels (b) HSLA steels (c) High alloy steels (d) Stainless steels	7	V1	CO1			
8.	The carbon content in steel is	1	K1	CO4			
9.	(a) Up to 2% (b) Above 2% (c) Below 0.8% (d) Above 6.3%	1	K1	CO5			
9.	Natural rubber is a polymer of (a) Butadiene (b) Ethyne (c) Styrene (d) Isoprene	1	111	005			
10	Engineering stress-strain curve and True stress-strain curve are equal up to	1	K1	CO6			
10.	(a) Proportional limit (b) Elastic limit (c) Yield point (d) Tensile strength point	ī.					
	PART - B ($12 \times 2 = 24$ Marks)	,					
	Answer ALL Questions						
11.	Differentiate between substitutional and interstitial solid solution.	2	<i>K</i> 2	CO1			
12.	State Gibb's phase rule.	2	K1	CO1			
	The tempering process follows the hardening process. Justify.	2	<i>K</i> 2	CO2			
	Differentiate between flame hardening and induction hardening process.	2	<i>K</i> 2	CO2			
	Brief down the concept of over ageing.	2	<i>K</i> 2	CO3			
16.	Which property decreases on strain hardening? Explain the same.	2	K2	CO3			
17.	List few alloying elements in steel.	2	<i>K1</i>	CO4			
18.	State the effects of addition of boron, chromium and cobalt in steels.	2	<i>K1</i>	CO4			
19.	Define the term 'degree of polymerisation'.	2	<i>K1</i>	CO5			
20.		2	K2	CO5			
	- · · · · · · · · · · · · · · · · · · ·						

21.	Distii	nguish between resilience and toughness.	2	<i>K</i> 2	COC
22.	How	can brittle fracture be prevented?	2	<i>K1</i>	CO
		<u>-</u>			
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions			
23.	a)	Explain with a neat sketch of Iron-Iron carbide equilibrium diagram and indicate all the phases. Also write the three important invariant reactions. OR	11	K2	CO
	b)	Discuss the classification, properties, and application of steel.	11	K2	CO
24.	a)	Explain the TTT diagram with a neat sketch with all the phases marked on the diagram.	11	K2	CO2
		OR			
	b)	Explain the principle and procedure of Jominy end quench test with a diagram. Also sketch the graph hardness vs distance from quenched end.	11	K2	CO2
25.	a)	In detail explain the concept of solid solution strengthening. Provide examples to substantiate the explanation.	11	K2	COS
		OR			
	b)	Explain the concept and principle of particulate strengthening in detail.	11	K2	CO
26.	a)	Discuss the properties and applications of cu alloys and aluminium alloys. OR	11	K2	CO4
	b)	Discuss the properties and applications of			
	U)	i) Tool Steels	6	K2	CO4
		ii) HSLA	5	K2	CO4
27.	a)	Write brief notes on following traditional ceramics i) Clay products ii) Glasses iii) Cements iv) Refractories OR	11	K2	COS
	b)	With relevant examples, explain the various types of polymers in detail.	11	K2	COS
28.	a)	Explain the method of testing the materials for fatigue and how is the fatigue data presented.	11	K2	COO
		OR			
	b)	Compare and contrast the Brinell, Vickers and Rockwell hardness tests.	11	<i>K</i> 2	COC