Reg. No.	
----------	--

Question Paper Code

13414

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Seventh Semester

Mechanical Engineering

20MEPC701 - FINITE ELEMENT ANALYSIS

Regulations - 2020

Du	ration: 3 Hours Max	. Marl	ks: 10)0
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$	Marks	<i>K</i> –	co
	Answer ALL Questions			
1.	Total potential energy = (a) Strain an array was also accepted. (b) Strain an array was also accepted.	1	K1	CO1
	 (a) Strain energy x work potential (b) Strain energy / work potential (c) Strain energy + work potential (d) Strain energy - work potential 			
2.	When a body falls freely towards the earth, then its total energy	1	K1	CO2
۷.	(a) Decreases (b) Increases			
	(c) First increases and then decreases (d) Remains constant			
3.	Number of shape functions in two noded beam element are	1	<i>K1</i>	CO2
	(a) 2 (b) 3 (c) 4 (d) 5			
4.	The value of the shape function at the specified point is	1	<i>K1</i>	CO3
_	(a) Zero (b) Unity (c) Infinity (d) None of the above	1	V1	CO1
5.	In Rayleigh-Ritz Method, which series is considered for approximating function	1	K1	CO4
	(a) Laplace series(b) Inverse Fourier series(c) Inverse laplace series(d) Fourier series			
6.	What type of interpolation is typically used with iso-parametric quadrilateral elements?	1	K1	CO5
0.	(a) Polynomial interpolation (b) Trigonometric interpolation			
	(c) Exponential interpolation (d) Logarithmic interpolation			
7.	For a 1D integral, how many points are typically used in Gaussian quadrature for a	1	<i>K1</i>	CO5
	second-degree polynomial?			
	(a) 1 (b) 2 (c) 3 (d) 4			
8.	Undamped vibration is also known as	1	K1	CO6
0	(a) Calculative (b) Deterministic (c) In-deterministic (d) Non-Calculative	1	K1	CO6
9.	Temperature at the end tip of the fin having uniform cross-sectional area is (a) maximum (b) minimum	1	K1	000
	(c) similar to the heat generation temperature (d) unpredictable			
10.	In dynamic analysis, a common element used for two-dimensional vibration problems is	1	K1	CO6
	the element.			
	(a) linear bar (b) triangular element (c) beam element (d) tetrahedral element			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions	2	W1	COL
	During discretization, mention the places where it is necessary to place a node.	2	K1	COI
12.	Why polynomial type interpolation functions are mostly used in FEM?	2	Kl	CO1
13.	Differentiate between truss and frame.	2	<i>K</i> 2	CO2
14.	Illustrate shape function of a two node bar element.	2	<i>K</i> 2	CO2
15.	What is meant by plane stress analysis?	2	<i>K1</i>	CO3
16.	What is meant by Axisymmetric Solid?	2	K1	CO3
17.	State the principle of minimum potential energy.	2	K1	CO4
	State the advantages of the Rayleigh Ritz method.	2	K1	CO4
	Differentiate between Isoparametric, super parametric and sub-parametric elements.	2	K2	CO5
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		1341	14

- CO6 K120. Write down the Guassian Quadrature expression for Numerical Integration.
- 2 *K*2 CO5 21. State the assumptions for the boundary conditions while solving finite element problems.
- 22. Define Longitudinal and Transverse vibrations.

*K*2 CO6

PART - C $(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

- 23. Describe the step by step procedure of solving Finite Element Analysis. a)
- *K*2 CO1

OR

b) Solve the differential equation for a physical problem expressed as $d^2y/dx^2 + 50 = 0, 0 \le x \le 10$

11 *K*2 CO1

K3

CO2

- with boundary conditions as y(0)=0 and y(10)=0 using (i) Least square method and
 - (ii) Galerkin method
- For a tapered bar of uniform thickness t = 10mm as shown in figure 1. Predict the 24. displacements at the nodes by forming into two element model. The bar has a mass density $\rho = 7800 \text{ kg/m}^3$, the young's modulus $E = 2x10^5 \text{ MN/m}^2$. In addition to self-weight, the bar is subjected to a point load P = 1 kN at its Centre.

K3 CO2 For the two bar truss shown in the figure 2, Estimate the displacements of node 1 11 b) and the stress in element 1-3. Take E = 70 GPa, $A = 200 \text{ mm}^2$

K3 CO3 25. Calculate the temperature force vector for the plane stress CST element shown in 11 figure 3. The element experiences a 20°C increase in temperature. Assume $\alpha = 6 \times 10^{-6}$ C. Take $E = 2 \times 10^{5}$ N/mm², v = 0.25, t = 5mm.

b) For the axisymmetric triangular elements as shown in figure 4. Evaluate the Strain 11 K3 CO3 displacement Matrix. Take the modulus of elasticity E = 210 GPa. Poisson's ratio = 0.25. The coordinates are given in millimeters.

Figure 4.

26. a) Using variational method, Solve the given differential equation

$$\frac{d^2y}{dx^2} + 300x^2 = 0$$
; $0 \le x \le 1$

with boundary conditions y(0) = 0 and y(1) = 0. The functional corresponding to this problem to be extremized is given by

$$I = \int_{0}^{1} \left\{ -\frac{1}{2} \left(\frac{dy}{dx} \right)^{2} + 300x^{2} y \right\} dx$$

Find the solution of the problem using Rayleigh Ritz method using a one term solution as $y = ax(1-x^2)$

OR

b) Solve the following simultaneous equations using the Gaussian elimination 11 K3 CO4 method.

$$2a + b + 2c - 3d = -2$$

 $2a - 2b + c - 4d = -15$
 $a + 2c - 3d = -5$
 $4a + 4b - 4c + d = 4$

27. a) Evaluate the Jacobian matrix for the iso-parametric quadrilateral element shown in 11 K3 CO5 the figure 5.

OR

b) Evaluate the integral by two point Gaussian Quadrature,

$$I = \int_{-1}^{1} \int_{-1}^{1} (2x^2 + 3xy + 4y^2) dxdy$$

Gauss points are +0.57735 and -0.57735 each of weight 1.0000.

K3 CO5

11

11

K3 CO4

28. a) A metallic fin 20 mm wide and 4 mm thick is attached to a furnace whose wall temperature is 180°C. The length of the fin is 120 mm. if the thermal conductivity of the material of the fin is 350 W/m°C and convection coefficient is 9 W/m²°C, determine the temperature distribution assuming that the tip of the fin is open to the atmosphere and that the ambient temperature is 25°C.

OR

b) A furnace wall is made up of three layers, inside layer with thermal conductivity of 8.5 W/mK, middle layer with thermal conductivity of 0.25 W/mK, outer layer with thermal conductivity of 0.08 W/mK. The respective thickness of inner, middle and outer layer are 25 cm, 5 cm and 3 cm respectively. The inside temperature of the wall is 600° C and outside of the insulation is exposed to atmospheric air at 30°C with Heat transfer coefficient of 45 W/m²K. Calculate the nodal temperatures.

K3 CO6