Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13664

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Fifth Semester

Mechanical and Automation Engineering

20MUPC502 - MECHANICS AND CONTROL OF ROBOTIC MANIPULATORS

Regulations - 2020

D	uration: 3 Hours Max	t. Mar	ks: 10	00			
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$	Marks	<i>K</i> –	co			
	Answer ALL Questions	wanks	Level	CO			
1.	The of a manipulator is the total volume swept out by the end-effector as the	1	<i>K1</i>	CO1			
	manipulator executes all possible motions.						
	(a) Workspace (b) Work envelope (c) Work load (d) Workplace						
2.	What is the main function of a robotic manipulator in industrial robots?	1	<i>K1</i>	CO1			
	(a) Movement tracking (b) Controlling the end-effector						
	(c) Providing sensory feedback (d) Powering the robot						
3.	Which of the following types of robots typically requires forward kinematics calculations?	1	CO2				
	(a) Mobile robot (b) Industrial manipulator arm						
	(c) Swarm robots (d) Autonomous drones						
4.	Which of the following is not typically a parameter in the DH (Denavit-Hartenberg)	1	K1	CO2			
	convention?						
	(a) Link length (b) Joint angle (c) Joint offset (d) End-effector mass						
5.	Which of the following is an Inverse Kinematics of a Serial Manipulator?	1	<i>K1</i>	CO3			
	(a) aims to determine its Joint Angle(s) and/or Link-Offsets for the given Position and						
	Orientation information						
	(b) aims to estimate its required Joint Force(s) and/or Torque(s)						
	(c) aims to determine the Position and Orientation of its End-effector with respect the Base						
	Coordinate System						
	(d) aims to determine its Joint Angle(s) and/or Link-Offsets for the known Joint Force(s)						
	and/or Torque(s) information						
6.	Choose the correct statement for the Trajectory Planning of a Robot	1	K1	CO3			
	(a) aims to determine its collision-free path, while moving from an initial position to a						
	final position						
	(b) aims to determine the time histories of position, velocity and acceleration of the Join						
	for ensuring their smooth variations						
	(c) is not required to carry out at all						
	(d) is to be done before carrying out its Kinematic analysis						
7.	Theorem is used to calculate the moment of inertia of a link about an axis located	. 1	<i>K1</i>	CO4			
	at the center of its mass.						
	(a) Parallel axis (b) Perpendicular axis (c) Tangent axis (d) Multi-axis	_					
8.	Choose the correct one for the Product of inertia.	1	K1	CO4			
	(a) positive value only (b) negative value only						
	(c) zero value only (d) either positive or negative or zero value		77.1	g05			
9.	Which term in a PID controller is responsible for reducing steady-state error?	Ι	K1	CO5			
1.0	(a) Proportional term (b) Integral term (c) Derivative term (d) Feed forward term	7	17.1	005			
10.	What does a closed-loop control system do that an open-loop system does not?	1	K1	CO5			
	(a) It uses feedback to adjust its output (b) It operates without sensors						
	(c) It only uses proportional control (d) It performs random actions						

PART - B $(12 \times 2 = 24 \text{ Marks})$

Answer ALL Questions

		Answer ALL Questions								
11.	1. Classify various types of robots based on their applications.									
12.	Define the pitch, yaw and roll motion of the robot.									
13.	Define Payload capacity of robot.									
14.	. Differentiate forward and inverse kinematics.									
15.	5. Justify the need of DH convention for a robot design.									
16.	. List out the needs for a kinematic analysis.									
17.	17. Explain the type of robotic system in which (serial or parallel) inverse kinematics usually is more challenging.				CO3					
18.	18. Explain the issues faced in inverse kinematics solvability.				CO3					
19.	State 1	nertia tensor with its suitable matrix.	2	<i>K1</i>	CO4					
20.	Infer t	he significance of the centrifugal force in robotic dynamics.	2	K2	CO4					
21.	Differ	entiate an open loop and closed loop control system.	2	K2	CO5					
22.	Justify	the needs of various types of Motors for manipulator control.	2	K2	CO5					
		$PART - C (6 \times 11 = 66 Marks)$								
		Answer ALL Questions								
23.	a)	Explain the various needs and applications of Robot in industrial scenario. OR	11	K2	CO1					
	b)	Explain the different types of grippers used in robot.	11	K2	CO1					
24.	a)	Explain the forward kinematics of SCARA robot with equations using DH	11	K2	CO2					
	α)	convention.								
		OR		***	~ ·					
	b)	Explain the DH convention in detail with suitable steps.	11	K2	CO2					
25.	a)	Explain briefly the steps involved in solving inverse kinematics of a manipulator using closed form solutions.	11	K2	СОЗ					
	OR									
	b)	Explain briefly solvability and existence of solutions in inverse kinematics.	11	K2	CO3					
26.	a)	Develop briefly the equations of Motion for a simple 2 DOF manipulator using Lagrange dynamic model.	11	К3	CO4					
		OR								
	b)	Derive the terms of Kinetic energy and potential energy using Lagrange Euler formulation.	11	К3	CO4					
27.	a)	Explain about machine vision in detail.	11	K2	CO5					
27.	u)	OR								
	b)	Explain briefly about electrical actuators.	11	K2	CO5					
	,									
28.	a) (i)	Explain the LE Dynamic Model algorithm for robotic control.	6	K2	CO4					
	(ii)	Explain segmentation techniques.	5	K2	CO5					
		OR								
	b) (i)	Explain the equations of motion by Lagrange Euler formulation for a 2 DOF planar manipulator.	6	K2	CO4					
	(ii)	manipulator. Explain about hydraulic actuators.	5	K2	CO5					
	()	1								