Reg. No.						
- C						

Question Paper Code

13643

M.E. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Third Semester

M.E. - Computer Science and Engineering 20PCSEL309 - BIO-INSPIRED COMPUTING

Regulations - 2020

Duration: 3 Hours M					100		
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions				Marks K- CO			
1.					CO1		
2.	Diffe	erentiate Exploration from Exploitation.	2	K2	CO1		
3.	Defi	ne isotropic Random walk.	2	<i>K1</i>	CO2		
4.	4. Why Eagle strategy is so efficient?						
5.	5. List the genetic operators.				CO3		
6.	6. How Differential evolution is different from Genetic algorithms?				CO3		
7.	Defi	ne Attraction and Diffusion.	2	<i>K1</i>	CO4		
8.	Wha	t do you understand by Swarm robotics?	2	<i>K1</i>	CO4		
9.	Defi	ne Image Processing.	2	<i>K1</i>	CO5		
10.	Wha	t do you mean by Heaviside function H(u)?	2	<i>K1</i>	CO5		
11.	a)	PART - B (5 × 13 = 65 Marks) Answer ALL Questions Explain how optimal convergence is done using Newton-Raphson's method.	13	K2	CO1		
		OR					
	b)	Illustrate any four Nature-inspired algorithms.	13	K2	CO1		
12.	a)	Explain the step sizes, Stopping Criteria and Search efficiency in detail.	13	K2	CO2		
		OR					
	b)	Describe in detail about Levy distribution and Flights.	13	K2	CO2		
13.	a)	Describe genetic algorithm in detail with an example. OR	13	K2	CO3		
	b)	Demonstrate Convergence analysis of Differential Evolution in detail.	13	K2	СОЗ		

14.	a)	Explain PSO algorithm in detail.	13	K2	CO4
		OR			
	b)	Illustrate Firefly Algorithm with an example.	13	K2	CO4
15.	a)	Experiment with the various Bio-inspired computation and its applications in image processing.	13	К3	CO5
		OR			
	b)	Apply the Fine-Tuning Deep Belief Networks using Cuckoo Search.	13	<i>K3</i>	CO5
		$PART - C (1 \times 15 = 15 Marks)$			
16.	a)	Analyze Mobile Object Tracking Using Cuckoo Search algorithm.	15	<i>K4</i>	CO6
		OR			
	b)	Analyze Improved Weighted Threshold Histogram Equalization Algorithm using BAT algorithm.	15	K4	CO6