Reg. No.						

Question Paper Code

13621

M.E. / M.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

First Semester

M.E. - Computer Science and Engineering

20PCSPC101 - ADVANCED DATA STRUCTURES AND ALGORITHMS

Regulations - 2020

Duration: 3 Hours Ma				x. Marks: 100				
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions				Marks K – Co				
1.					CO1			
2.	What is recursion? Give Example.				CO1			
3.	3. List out the properties of B-tree.				CO2			
4.	4. Define Fibonacci heap.				CO2			
5.	5. What is a disjoint set? Give example.				CO3			
6.	6. List any two applications of shortest path algorithms.				СОЗ			
7.	7. Write the sequence of steps followed in developing a dynamic programming algorithm.				CO4			
8.	. What is a greedy algorithm? State the characteristics of greedy approach.				CO4			
9.	9. Define NP-Hard. Give an example of NP-Hard problem.				CO5			
10.	10. Define polynomial-time reduction in the context of NP-completeness.				CO5			
11.	a)	PART - B ($5 \times 13 = 65$ Marks) Answer ALL Questions Describe about asymptotic notations used for algorithm analysis? Give example.	13	K2 (CO1			
OR								
	b)	Explain about the Recursion tree method for solving recurrence with an example.	13	K2 (CO1			
12.	a)	Insert the following elements in Red Black Tree? 100,108,75,105,106,300,205,400,600 OR	13	КЗ (CO2			
	b)	Construct the binary search tree for the given values and perform pre order, post order, in order traversal? 10,12,7,5,16,3,25,4,60.	13	К3 (CO2			
13.	a)	Explain with suitable examples the graph traversal algorithms. OR	13	K2 (CO3			

- b) Outline the steps involved in Kruskal's algorithm to construct a ¹³ ^{K2} ^{CO3} minimum spanning tree with example.
- 14. a) Explain the elements of dynamic programming. Describe the optimal 13 K2 CO4 substructure of LCS problem with an example.

OR

- b) Illustrate the construction of Huffman code using an example. 13 K2 CO4
- 15. a) Discuss the approximation algorithm for NP-Hard Problems. 13 K2 CO5

OR

b) Explain NP Complete problem with suitable example. 13 K2 CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

Answer ALL Questions

16. a) Solve the following graph to find the shortest path between edges ¹⁵ ^{K4} ^{CO3} using Floyd Warshall algorithm.

b) Given a weighted, directed and connected graph of V vertices and E ¹⁵ ^{K4} ^{CO3} edges, Find the shortest distance of all the vertices from the source vertex A.

