Reg. No.								

Question Paper Code

13680

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Computer Science and Engineering

(Common to Artificial Intelligent and Data Science, Information Technology, Computer science and Engineering (AIML), Computer science and Engineering (IoT), M.Tech - Computer Science and Engineering (5 Years Integrated) & Computer science and Engineering (Cyber Security))

24BSMA201 - DISCRETE STRUCTURES

Regulations - 2024

т.	Regulations - 2024 Ouration: 3 Hours Max	3.6.1	10	0
Ľ	. Mark	s: 10	0	
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$	Marks	K –	co
1	Answer ALL Questions What is the Negation of the statement "Sam is rich and happy"?	1		CO1
1.	(a) Sam is poor and unhappy (b) Either Sam is poor or happy	1	MI	COI
	(c) Either Sam is poor or unhappy (d) Sam is not rich and happy.			
2.	What is the logically equivalent statement to $\neg (\forall x \in A) p(x)$?	1	K1	CO1
	(a) $(\exists x \in A) \neg p(x)$ (b) $(\exists x \in \neg A)p(x)$ (c) $(\forall x \in \neg A)p(x)$ (d) $(\forall x \in A) \neg p(x)$			
3.	If 100 houses are painted using 9 different colours. Demonstrate the minimum number of	1	<i>K</i> 2	CO2
	houses that must share the same colour.			
	(a) 15 (b) 13 (c) 12 (d) 14			
4.	What is the total number of possible arrangements for 5 books placed in a row?	1	<i>K1</i>	CO2
	(a) 25 (b) 10 (c) 120 (d) 100			
5.	Which of the following is not a property of a semigroup?	1	<i>K1</i>	CO3
	(a) Closure (b) Associativity (c) Identity element (d) Binary operation	,	***	g03
6.	What condition must be satisfied for two cosets aH and bH to be equal?	1	<i>K1</i>	CO3
7	(a) $a = b$ (b) $a - b \in H$ (c) $ab \in H$ (d) $a^{-1}b \in H$	1	<i>K</i> 2	CO4
7.	Find the number of elements in the adjacency matrix of a graph with 7 vertices. (a) 7 (b) 14 (c) 36 (d) 49	1	KΔ	CO4
8.	In a complete graph with 6 vertices, what is the degree of each vertex?	1	K1	CO4
0.	(a) 1 (b) 3 (c) 5 (d) 6			
9.	Which of the following is NOT true for a lattice?	1	K1	CO5
,	(a) It is a poset (b) Every pair has a join and meet			
	(c) It must be a total order (d) It can be visualized using Hasse diagrams			
10.	What is the result of $a + 0$ in Boolean Algebra?	1	K1	CO6
	(a) a (b) 1 (c) 0 (d) a'			
	$PART - B (12 \times 2 = 24 Marks)$			
	Answer ALL Questions			
11.	Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.	2	<i>K</i> 2	CO1
12.	2	<i>K1</i>	CO1	
13.	State the Well Ordering Principle.	2	<i>K1</i>	CO2
14.	Find the number of permutations of the word MISSISSIPPI.	2	<i>K</i> 2	CO2
15.	Show that the identity element of a group is unique.	2	<i>K</i> 2	CO3
16.	Define Normal Subgroup.	2	<i>K1</i>	CO3
17.	Define Self-Complementary graph.	2	<i>K1</i>	CO4
18.	Determine the number of vertices if G has 10 edges with two vertices of degree 4 and all	1 2	<i>K</i> 2	CO4
10	others of degree 3. Define Poset with an example.	2	<i>K1</i>	CO5
	Show that every interval of a lattice is a sublattice.	2	K2	CO5
	•	-		
K1 -	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		136	30

CO6 21. Show that the elements 0 and 1 of a Boolean algebra B are unique. 2 CO6 22. State identity laws in Boolean algebra. PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions Apply logical laws to derive the PCNF and PDNF of $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$. 23. CO111 CO1 b) Apply the indirect method to prove the given premises. $R \rightarrow 7Q, R \vee S, S \rightarrow 7Q, P \rightarrow Q \Rightarrow 7P$ a) Apply Mathematical Induction to show that for all positive integers n, is CO224. $3^{2n+1} + 2^{n+2}$ divisible by 7. OR b) From a committee consisting of 6 men and 7 women, find the number of ways to 11 K3 CO2 select a committee of (i) 3 men and 4 women. (ii) 4 members which has at least one women. (iii) 4 persons that has at most one man. (iv) 4 persons of both sexes. (v) 4 persons in which Mr. and Mrs. Kannan is not included. a) Let $G = \{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\}$, show that G is a group under the K3 CO3 25. operation of matrix multiplication 11 CO3 State and prove Lagrange's theorem on finite Group. K3 *K3* CO4 Examine whether the following pair of graphs are isomorphic or not. Justify your 26.

answer.

b) Illustrate with examples of graphs that are

OR K3 CO4

- (i) Eulerian but not Hamiltonian
- (ii) Hamiltonian but not Eulerian
- (iii) Both Hamiltonian and Eulerian
- (iv) Neither Hamiltonian nor Eulerian.

K3 CO5 27. a) Let (L, \leq) be a lattice. For any a,b,c \in L the following properties are called isotonicity 11 hold. If $b \le c$ then prove that

(i) $a * b \le a * c$ and (ii) $a \oplus b \le a \oplus c$

b) Prove that every chain is a distributive lattice.

11 *K3* CO5

State and prove Boundedness laws in 28. Boolean algebra.

11 *K3* CO6

OR

K3 CO6 b) In a Boolean algebra, prove that the following statements are equivalent. (iii)a' + b = 1(i)a + b = b(ii)a.b = a(iv)a.b' = 0

13680