|--|

Question Paper Code

13682

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Mechanical Engineering

(Common to Mechanical and Automation Engineering)

24BSMA203 - DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

 1. 2. 3. 4. 7. 8. 9. 	Regulations - 2024			
 3. 4. 7. 8. 9. 		k. Mar	ks: 10	00
 3. 4. 7. 8. 9. 	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$ Answer ALL Questions	Marks	K – Level	со
 3. 4. 7. 8. 9. 	What is the order of the differential equation given by $\frac{dy}{dx} + 4y = \sin x$?	1	<i>K1</i>	CO1
 3. 4. 5. 7. 8. 9. 	(a) 0.5 (b) 1 (c) 2 (d) 0			
4.5.6.7.8.	The nature of roots for differential equation $(D^2 + 9)y = 0$ is (a) Complex conjugates (b) Real and distinct (c) Real and equal (d) None of the above	1	Kl	CO1
4.5.6.7.8.	How many prior values are required to predict the next value in Milne's method?	1	<i>K1</i>	CO2
5.6.7.8.	(a) One (b) Two (c) Three (d) Four			
6.7.8.9.	Modified Euler's formula is	1	<i>K1</i>	CO2
6.7.8.9.	(a) $y_{n+1} = y_0 + \frac{n}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$			
6.7.8.9.	(b) $y_{n+1} = y_n + \frac{\bar{h}}{2} [f(x_n, y_n) + f(x_{n-1}, y_{n-1})]$			
6.7.8.9.	(c) $y_{n+1} = y_0 + \frac{h}{2} [f(x_n, y_n) + f(x_{n-1}, y_{n-1})]$			
6.7.8.9.	(d) $y_{n+1} = y_n + \frac{n}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$			
7.8.9.	A solution of a partial differential equation which contains as many arbitrary constants as	1	<i>K1</i>	CO3
7.8.9.	the number of independent variables is called the			
7.8.9.	(a) singular solution (b) general solution			
7.8.9.	(c) complete solution (d) particular solution Eliminate the arbitrary constants a and b from the equation $z = ax + by + ab$.	1	K1	CO3
8.9.	(a) $z = px + qy + pq$ (b) $z = px + qy + p^2$			
8.9.	(a) $z = px + qy + pq$ (b) $z = px + qy + pq$ (c) $z = qx + py + pq$			
8.9.	Find the complementary function of $(D^2 + DD' - 2D'^2)z = 0$	1	K2	CO4
8.9.	(a) $z = \varphi_1(y + x) + 2\varphi_2(y + 2x)$			
8.9.	(a) $z = \psi_1(y + x) + 2\psi_2(y + 2x)$ (b) $z = \phi_1(y + x) - 2\phi_2(y + 2x)$			
8.9.	(c) $z = \phi_1(y + x) + \phi_2(y + 2x)$			
8.9.	(d) $z = \phi_1(y + x) - 2\phi_2(y - 2x)$			
	Find the particular integral of the non-homogeneous linear partial differential equation	1	K2	CO4
	$(D - D' - 1)(D - D' - 3)z = e^{2x - y}$ is			
	(a) $\frac{x}{2}e^{2x-y}$ (b) $-\frac{1}{3}e^{2x-y}$ (c) $-\frac{1}{2}e^{2x-y}$ (d) $\frac{1}{2}e^{2x-y}$			
	How many boundary conditions are required to solve the two-dimensional heat equation	1	<i>K1</i>	CO5
	in the steady state condition			
	(a) 3 (b) 2 (c) 4 (d) 1			

10. The Bender – Schmidt recurrence equation is

- a) $u_{i,j+1} = \frac{1}{2} [u_{i+1,j} + u_{i-1,j}]$
- b) $u_{i+1,j+1} = \frac{1}{2} [u_{i+1,j-1} + u_{i-1,j}]$
- c) $u_{i,j} = \frac{1}{2} [u_{i+1,j+1} + u_{i-1,j}]$
- d) $u_{i,j} = \frac{1}{2} [u_{i+1,j+1} + u_{i-1,j-1}]$

PART - B $(12 \times 2 = 24 \text{ Marks})$

Answer ALL Questions

- 11. Solve $(D^2 + 5D + 4)y = 0$. 2 CO1 *K3*
- 2 12. Transform $(x + 2)^2 \frac{d^2y}{dx^2} - (x + 2) \frac{dy}{dx} + y = 3x + y$ in to differential equation with constant *K*2 CO1
- 13. Given y' = x + y, y(0) = 1. Find y(0.2) by Euler's method. 2 K2CO2
- 2 Write the Runge-Kutta algorithm of 4th order to solve $\frac{dy}{dx} = f(x,y)$ with $y(x_0) = y_0$. *K1* CO2
- 2 15. Solve p + q = pq. *K*3 CO3
- 16. Find the complete integral of pq = xy.
- 17. Solve the particular integral of $(D^2 2DD' + D'^2)z = e^{x-y}$. 2 *K3* CO4
- 18. Find the complementary integral of $(D^4 D^{'4})z = 0$. 2 K2 CO4
- Classify the nature of the equation $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$. CO5
- 2 K1CO5 Write all the possible solutions of one-dimensional wave equation.
- 2 21. State Schmidt's explicit formula for solving heat flow equation. K1CO6
- 22. Write down the Crank Nicolson formula to solve $u_t = u_{xx}$.

PART - C $(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23. a) Solve
$$(D^2 + 4D + 3)y = e^{-x} \sin x + xe^{3x}$$
.

11 K3 CO1

K2 CO6

2

2

*K*2

CO3

K1 CO6

OR

- b) Solve $(D^2 + 4)y = \sec 2x$ by the method of variation of parameters.
- 11 CO1
- Using the Runge-Kutta method of fourth order solve $\frac{dy}{dx} = x + y^2$ given that y = 1CO224. when x = 0 at x = 0.1, 0.2.

- b) Given $\frac{dy}{dx} = xy + y^2$ with y(0) = 1, y(0.1) = 1.1169 and y(0.2) = 1.2773, solve 11 K3 CO2 y(0.4) by Milne's method.
- 11 *K3* CO3 a) Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$.

b) Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$.

11 K3 CO3

a) Solve $[D^3 - 7DD'^2 - 6D'^3]z = \sin(x + 2y) + e^{2x+y}$. 26.

11 K3 CO4

b) Solve $r + 2s + t + 2p + 2q + z = e^{2x+y}$.

11 K3 CO4 27. a) A tightly stretched string with fixed end points x = 0 and x = l is initially at rest in ¹¹ ^{K3} ^{CO5} its equilibrium position. If it is set vibrating by giving each point a velocity kx(l-x), Find the displacement of the string at any distance 'x' from one end at any time 't'.

OR

- b) An infinitely long plate in the form of an area is enclosed between the lines x = 0 and X = 0 and X = 0. The temperature is zero along the edges X = 0, X = 0 and at X = 0. The edge X = 0 is kept at temperature X = 0 and X = 0
- 28. a) Solve $\frac{\partial^2 u}{\partial x^2} = 2\frac{\partial u}{\partial t}$, u(0,t) = 0, u(4,t) = 0, and u(x,0) = x(4-x), choosing h = k = 1 and using Bender-Schmidt formula find the values up to t = 5.

OR

b) Using Crank–Nicolson's implicit scheme, solve $16\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le 1$, t > 0, given that u(x,0) = 0, u(0,t) = 0, u(1,t) = 100t Compute u for one-time step with $h = \frac{1}{4}$.