Reg. No.								

Question Paper Code

13683

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Computer Science and Business Systems

24BSMA204 - DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Regulations - 2024

D	Ouration: 3 Hours	Max	. Mar	ks: 10	00
	$PART - A (MCQ) (10 \times 1 = 10 Marks)$		Marks	<i>K</i> –	co
	Answer ALL Questions		muns	Level	CO
1.	Let P: We should be honest., Q: We should be dedicated., R: We should be overc				
	Then 'We should be honest or dedicated but not overconfident.' is best represented	-	1	Kl	CO1
	(a) $\sim P \ V \sim Q \ V \ R$ (b) $P \land \sim Q \land R$ (c) $P \ V \ Q \land R$ (d) $P \ V \ Q \land R$	۱ ~R			
2.	The contrapositive of $p \rightarrow q$ is the proposition of		1	<i>K1</i>	CO1
		→ p	1	11.1	001
3.	A relation represents an equation where the next term is dependent on the previous	is term is			
	called		1	<i>K1</i>	CO2
	(a) Binomial relation (b) Recurrence relation (c) Void relation (d) None of				
4.	According to principle of mathematical induction, if $P = m^{k+1} + 5$ is true then	must			
	be true.		1	<i>K1</i>	CO2
	(a) $P(k) = 3m^k$ (b) $P(k) = m^k + 5$ (c) $P = m^{k+2} + 5$ (d) $P(k)$	$= m^{k+1}$			
5.	The elements of the set $\{1, i, -i, -1\}$ forms a		1	V1	CO3
	(a) semi group (b) subgroup (c) cyclic group (d) abelian g	roup	1	K1	COS
6.	If H ₁ and H ₂ are subgroups of the group G, Then, which one of the following is al	so a			
	subgroup of G?		1	Kl	CO3
	(a) $H_1 \cup H_2$ (b) $H_1 \cap H_2$ (c) $H_1 \Delta H_2$ (d) none of	these			
7.	In Boolean algebra, the complement of 1 is:		1	V1	CO1
	(a) 1 (b) 0 (c) -1 (d) not defin	ied	1	K1	CO4
8.	The dual of $A + 0 = A$ is				a
	(a) $A \cdot 1 = A$ (b) $A + 1 = A$ (c) $A \cdot 0 = A$ (d) $A + A = A$	0 = 1	1	KI	CO4
9.	A Hamiltonian path in a graph	_			
	(a) Visits every edge exactly once (b) Visits every vertex exact	v once	1	K1	CO5
	(c) Visits every vertex and edge exactly once (d) Must be a cycle	J			
10.	According to Euler's formula for planar graphs				
	(a)V - E + F = 2 $(b)V + E = 2$ $(c)V - E = F$ $(d)F = C$	=V+E	1	Kl	CO6
		–			
	$PART - B (12 \times 2 = 24 Marks)$				
	Answer ALL Questions				
11.	Prove that $(p \rightarrow q) \Rightarrow p \rightarrow (p \land q)$.		2	K2	CO1
	Is the statement $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\forall x)Q(x)$ valid?		2	K2	CO1
	In any group of 100 people, several will have birthdays in the same month. At	least how			
13.	many must have birth days in the same month.	icast now	2	<i>K</i> 2	CO2
14	Solve $S(k) - 10S(k-1) + 9S(k-2) = 0$, $S(0) = 3$, $S(1) = 11$.		2	<i>K3</i>	CO2
	Define a Group with example.		2	KI	CO3
	Let a and b are any two elements of a group $(G,*)$, then show that G is abelian if	f and only		11.1	203
10.		and only	2	<i>K</i> 2	CO3
17	if $(a * b)^2 = a^2 * b^2$. Prove that in a Replace algebra, the complement of every element is unique.		2	K2	CO4
	Prove that in a Boolean algebra, the complement of every element is unique.			K2	
	In a Boolean algebra, prove that $ab + abc + a'b + ab'c = b + ac$.		2 2	K2	CO4
19.	State and prove the hand shaking theorem.		2	<i>K</i> 2	CO5

20. Find the number of vertices, the number of edges and the degree each vertex in the following graph. Also verify the handshaking theorem.

2 K2 CO5

21. Define binary tree with an example.

2 K1 CO6

22. Define planar graphs.

2 K1 CO6

PART - $C(6 \times 11 = 66 \text{ Marks})$

Answer ALL Questions

23. a) Determine the principal conjunctive normal form and principal disjunctive normal II K3 COI form of $p \rightarrow ((p \rightarrow q) \land \neg(\neg q \lor \neg p))$.

OR

- b) Verify the validity of the following argument:

 Every living thing is a plant or an animal. Rama's dog is alive and it is not a plant.

 All animals have hearts. Therefore, Rama's dog has a heart.
- 24. a) Prove by using Mathematical induction $3^n + 7^n 2$ is divisible by 8, for $n \ge 1$.

OR

- b) Solve the recurrence relation $a_{n+2}+3a_{n+1}+2a_n=3^n \text{ , } n\geq 0. \text{given that } a_0=0 \text{ and } a_1=1$
- 25. a) If R is a relation defined on Z such that aRb if and only if $a^2 b^2$ is divisible by3, $a^{11} = a^{11} + a^{11} +$

OR

b) State and prove Lagrange's theorem.

11 K3 CO3

26. a) State and prove De Morgan's laws in Boolean algebra.

11 K3 CO4

CO4

- OR
- b) Minimise the function $f(a, b, c, d) = \Sigma(1,2,4,5,6,11,12,13,14,15)$ using Karnaugh ¹¹ map method.
- 27. a) Determine whether the following graphs are isomorphic or not.

- b) Prove that the maximum number of edges in a simple disconnected group G with n 11 K3 CO5 vertices and k components is $\frac{(n-k)(n-k+1)}{2}$.
- 28. a) Prove that a connected planar graph with n vertices and e edges has e n + 2 11 K3 CO6 regions.

OR

b) Prove that a simple graph G has a spanning tree if and only if G is connected.

11 K3 CO6