Neg. No.

13737

Question Paper Code

13737

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Second Semester

Computer Science and Business Systems

24BSMA205 - STATISTICAL METHODS WITH LABORATORY

Regulations - 2024

(Use of Statistical table is permitted)

	(Use of Statistical table is per	mitted)								
Dι	uration: 3 Hours	Max	. Marl	ks: 10	00					
$PART - A (MCQ) (10 \times 1 = 10 Marks)$										
	Answer ALL Questions		Marks	Level	co					
1.	An advertising agency wants to test the hypothesis that the pro	oportion of adults in Pakistan	1	K2	CO1					
	who read a Sunday Magazine is 25 percent. The null hypothes	sis is that the proportion								
	reading the Sunday Magazine is									
	(a) Different from 25% (b) Equal to 25% (c) Less than	25% (d) More than 25 %								
2.	In a criminal trial, a Type I error is made when		1	<i>K</i> 2	CO1					
	(a) a guilty defendant is acquitted (set free)									
	(b) an innocent person is convicted (sent to jail)									
	(c) a guilty defendant is convicted									
	(d) an innocent person is acquitted									
3.	The regression lines pass through		1	K1	CO2					
	(a) Origin (b) $(0, y)$ (c) (\bar{x}, \bar{y})	(d) $(x, 0)$								
4.	If X, Y are independent then $\rho(X,Y) =$		1	<i>K</i> 2	CO2					
	(a) 0 (b) $E(XY)$ (c) 1	(d) -1								
5.	An estimator is said to be consistent if		1	<i>K1</i>	CO3					
	(a) It always gives the same value (b) It converges in p	robability to the parameter								
	(c) Its variance is zero (d) It is unbiased									
6.	If $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$ are the order statistics, then $X_{(k)}$ is		1	K1	CO3					
	(a) Always equal to sample mean (b) The k^{th} land	rgest observation								
	(c) The k^{th} smallest observation (d) The mode									
7.	Wilcoxon Signed-Rank Test is used for		1	K1	CO4					
, •	•	nal or interval data								
	(c) Independent samples (d) Proportions									
8.	Kendall's coefficient of concordance (W) is used to measure		1	K1	CO4					
٠.	(a) Correlation between two variables									
	(b) Consistency of ranks among multiple raters									
	(c) Variance of a single population									
	(d) Difference in medians between groups									
9.	The main purpose of using a moving average is to		1	<i>K1</i>	CO5					
		regular components								
		onential trends								
10.	Which of the following is a valid ARMA (1,1) model?		1	<i>K1</i>	CO5					
	(a) $X_t = \phi X_{t-1} + \epsilon_t + \theta$ (b) $X_t = X_{t-1}$	$+\epsilon_t$								
	(c) $X_t = \epsilon_t$ (d) $X_t = a + b$	•								
		·								
	$PART - B (12 \times 2 = 24 Marks)$									
	Answer ALL Questions									
11.	Define parameter and statistic.		2	<i>K1</i>	CO1					
12.	Define level of significance.		2	<i>K1</i>	CO1					
13.	Define Standard error.		2	<i>K1</i>	CO1					
***		W. G.		1070	7					

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

14.	Wri	te the properties of coef	ficient of	corr	elatio	n.					2	K1	CO2
15.		at are the assumptions to					Varia	ance?			2	K2	CO2
16.	Wri	te ANOVA table for Ra	ndomize	d Blo	ck D	esign	•				2	<i>K1</i>	CO2
17.	Giv	e an example of a biased	l but con	sister	ıt esti	mato	r.				2	K1	CO3
18.											2	K1	CO3
19.											2	K1	CO4
20.				le usi	ng W	ilcox	on sig	gned r	ank te	est?	2	<i>K1</i>	CO4
21.											2	K1	CO5
22.	. What are the classifications of forecasting?										2	K1	CO5
			DAT	от 1	7 (6 .	. 11	<i>((</i>)	/[a] - /	.)				
					ر (o × er AI			Iarks	s)				
23.	۵)	State and prove Nevmo				_	uesno	118			11	<i>K3</i>	CO1
23.	3. a) State and prove Neyman-Pearson Lemma. OR											110	001
	b)	The means of two sing	ole large	sam			00 an	d 200)() me	mbers are 67.5 inches	5	<i>K3</i>	CO1
	(i)	and 68.0 inches respec	_										
	(1)	population of standard	-			_		_					
		* *				•				were males, while in	6	<i>K3</i>	CO1
	(ii)					,				,			
	()	any significant differen											
		•											
24.	a)	The following table she	ows the	corres	spond	ing v	alues	of 3	variab	$\operatorname{les} X_1, X_2, X_3.$	11	<i>K3</i>	CO2
			X_1	3	5	6	8	12	14				
			1										

Find the regression equation of X_3 on X_1 and X_2 . Estimate the value of X_3 when X_1 10, $X_2 = 6$.

OR

b) As part of the investigation of the collapse of the roof of a building, a testing laboratory is given all the available bolts that connected the steel structure at three different positions on the roof. The forces required to shear each of these bolts (Codes values) are as follows.

Position 1:	90	82	79	98	83	91	92
Position 2:	105	89	93	104	91	95	86
Position 3:	83	89	80	94	92	96	93

Perform an analysis of variance to test at the 0.05 level of significance whether the differences among the sample means at the three positions are significant.

a) For random sampling from normal population N (μ , σ^2), find the maximum likelihood 11 K3 CO3 25. estimators for μ and σ^2 .

OR

b) If $X_1, X_2, ..., X_n$ is a random sample from Bernoulli population, show that $\hat{\theta} = \frac{\sum X_i}{n}$ is a K3 CO3 sufficient estimator of parameter θ .

11

K3 CO2

The clothing manufacture purchased some newly designed sewing machine in the 26. a) hopes that production would be increased. The production records of the random sample of the workers are shown below:

diffpre of the	imple of the workers are shown below.														
Workers	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Old machine	28	36	27	25	38	36	40	29	32	28	20	32	32	32	36
New machine	36	40	25	32	30	32	40	28	35	23	26	31	23	34	36

Use the Wilcoxon - signed rank test to determine whether the new machines have significantly increased production. Use a 0.05 level of significance.

OR

b) A random sample of 30 students obtained the following marks in a class test. Test the hypothesis that their median score is more than 50. (Use Sign Test)

55	58	25	32	26	85	44	80	33	72
10	42	15	46	64	39	38	30	36	65
72	46	54	36	39	94	25	74	66	29

27. a) For each of the following models:

(a) $X_t = 0.3X_{t-1} + Z_t$

(b) $X_t = Z_t - 1.3Z_{t-1} + 0.4Z_{t-2}$

(c) $X_t = 0.5X_{t-1} + Z_t - 1.3Z_{t-1} + 0.4Z_{t-2}$

express the model using B notation and determine whether the model is stationary and/or invertible.

OR

b) Explain in detail about Moving average processes.

11 K3 CO5

K3 CO1

K3 CO4

K3 CO4

K3 CO5

28. a) (i) A company has the head office at Kolkata and a branch at Mumbai. The personnel director wanted to know if the workers at the two places would like the introduction of a new plan of work and a survey was conducted for this purpose. Out of a sample of 500 workers at Kolkata, 62% favoured the new plan. At Mumbai out of a sample of 400 workers, 41% were against the new plan. Is there any significant difference between the two groups in their attitude towards the new plan at 5% level?

K3 CO4 (ii) 25 individuals were sampled as to whether they like or dislike a product indicated by

Y and N respectively. The resulting sample is shown by the following sequence: YYNNNYYYNYNNYNNNNYYYYNN.

Find the number of runs and test whether the responses are random at 1% level of significance.

OR

b)(i) In a survey of buying habits, 400 women shoppers are chosen at random in super market 'A' located in a certain section of the city. Their average weekly food expenditure is Rs. 250 with a standard deviation of Rs. 40. For 400 women shoppers chosen at random in super market 'B' in another section of the city, the average weekly food expenditure is Rs. 220 with a standard deviation of Rs. 55. Test at 1% level of significance whether the average weekly food expenditure of the two populations of shoppers is equal.

K3 CO1

(ii) Apply the K-S test to check that the observed frequencies match with the expected frequencies which are obtained from Normal distribution.

K3 CO4

Test Score: 25-30 31-36 37-42 43-48 49-54 55-60 61-66 25 30 21 12 Observed Frequency: 9 22 6 Expected Frequency: 6 17 32 35 18 13 4